精英家教网 > 初中数学 > 题目详情

【题目】如图1,抛物线y=﹣x2+bx+c与x轴交于A(2,0),B(﹣4,0)两点.

(1)求该抛物线的解析式;
(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在抛物线的第二象限图象上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存,请说明理由.

【答案】
(1)

解:将A(2,0),B(﹣4,0)代入得:

解得:

则该抛物线的解析式为:y=﹣x2﹣2x+8


(2)

解:如图1,点A关于抛物线对称轴的对称点为点B,设直线BC的解析式为:

y=kx+d,

将点B(﹣4,0)、C(0,8)代入得:

解得:

故直线BC解析式为:y=2x+8,

直线BC与抛物线对称轴 x=﹣1的交点为Q,此时△QAC的周长最小.

解方程组 得,

则点Q(﹣1,6)即为所求


(3)

解:如图2,过点P作PE⊥x轴于点E,

P点(x,﹣x2﹣2x+8)(﹣4<x<0)

∵SBPC=S四边形BPCO﹣SBOC=S四边形BPCO﹣16

若S四边形BPCO有最大值,则SBPC就最大

∴S四边形BPCO=SBPE+S直角梯形PEOC

= BEPE+ OE(PE+OC)

= (x+4)(﹣x2﹣2x+8)+ (﹣x)(﹣x2﹣2x+8+8)

=﹣2(x+2)2+24,

当x=﹣2时,S四边形BPCO最大值=24,

∴SBPC最大=24﹣16=8,

当x=﹣2时,﹣x2﹣2x+8=8,

∴点P的坐标为(﹣2,8).


【解析】(1)直接利用待定系数求出二次函数解析式即可;(2)首先求出直线BC的解析式,再利用轴对称求最短路线的方法得出答案;(3)根据SBPC=S四边形BPCO﹣SBOC=S四边形BPCO﹣16,得出函数最值,进而求出P点坐标即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.

(1)判断△ABE的形状,并证明你的结论;

(2)用含b代数式表示四边形ABFE的面积;

(3)求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】PQ分别是边长为4cm的等边的边ABBC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都是,设运动时间为t秒.

连接AQCP交于点M,则在PQ运动的过程中,变化吗:若变化,则说明理由,若不变,则求出它的度数;

连接PQ

秒时,判断的形状,并说明理由;

时,则______直接写出结果

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,正确的有(

①RtABC中,已知两边长分别为34,则第三边长为5

有一个内角等于其他两个内角和的三角形是直角三角形;

三角形的三边分别为abC,若a2+c2=b2,那么C=90°

ABC中,ABC=156,则ABC是直角三角形.

A1 B2 C3 D4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CDRtABC斜边AB上的高,将BCD沿CD折叠,B点恰好落在AB的中点E处,则A等于______度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图,后人称其为赵爽弦图(如图),图由弦图变化得到,它是由作个全等的直角三角形拼接而成,记图中正方形,正方形,正方形的面积分别为,若,则的值是(

A. 5 B. C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,有张写有实数的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开两张都是无理数的概率是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学研究课上,老师出示如图1所示的长方形纸条,然后在纸条上任意画一条截线段,将纸片沿折叠,交于点,得到,如图2所示:

(1),求的大小;

(2)改变折痕位置,判断的形状,并说明理由;

(3)爱动脑筋的小明在研究的面积时,发现边上的高始终是个不变的值.根据这一发现,他很快研究出的面积最小值为,求的大小;

(4)小明继续动手操作,发现了面积的最大值,请你求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣ x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C,D同时出发,当动点D到达原点O时,点C,D停止运动.

(1)直接写出抛物线的解析式:
(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?
(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案