精英家教网 > 初中数学 > 题目详情

如图,以(3,0)为圆心作⊙A,⊙A与y轴交于点B(2,0),与x轴交于C、D,P为⊙A上不同于C、D的任意一点,连接PC、PD,过A点分别作AE⊥PC于E,AF⊥PD于F.设点P的横坐标为x,AE2+AF2=y.当P点在⊙A上顺时针从点C运到点D的过程中,下列图象中能表示y与x的函数关系的图象是


  1. A.
  2. B.
  3. C.
  4. D.
A
分析:连接AB.根据勾股定理求得AB2=13,即圆的半径的平方=13;根据三个角是直角的四边形是矩形,得矩形AFPE,则AE=PF,根据垂径定理,得PF=DF,则AE2+AF2=AF2+DF2=AB2=y,从而判断函数的图象.
解答:连接AB.
∵A(3,0),B(2,0),
∴AB2=13.
∵CD是直径,
∴∠P=90°.
又AE⊥PC于E,AF⊥PD于F,
∴四边形AEFP是矩形.
∴AE=PF.
∵AF⊥PD于F,
∴PF=DF.
∴AE=DF.
∴y=AE2+AF2=AF2+DF2=AB2=13.
故选A.
点评:此题综合运用矩形的判定和性质、垂径定理求得y的值,常数函数是平行于坐标轴的一条直线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向精英家教网A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B运动.
(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;
(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以正方形ABCD的对角线AC为一边,延长AB到E,使AE=AC,以AE为一边作菱形AEFC,若菱形的面积为9
2
,求正方形边长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△BCF的斜边BC为直径作⊙O,A为
BF
上一点,且
AB
=
AF
,AD⊥BC,垂足为精英家教网D,过A作AE∥BF交CB的延长线于E.
求证:
(1)AE是⊙O切线;
(2)
BD
CD
=
BE
EC

(3)若⊙O直径为d,则
1
CD
+
1
EC
=
2
d

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥母线长为4,高线长为3,则圆柱的侧面积为
 
.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•张家港市模拟)如图,以矩形OABC的顶点O为坐标原点,OA所在的直线为x轴,OC所在的直线为y轴,建立直角坐标系.已知OA=3,OC=2,点E是AB的中点,点F在BC上,CF=1,点M、N分别是x轴、y轴上的动点,则四边形MEFN周长的最小值为
5+
5
5+
5

查看答案和解析>>

同步练习册答案