分析:根据二次函数的定义得到m≠0且m2-m=2,可解得m=2或-1;由于x=0时,y=0,所以此函数图象与x轴的交点坐标为(0,0),然后根据二次函数的性质确定对称轴.
解答:解:根据题意得m≠0且m2-m=2,
解得m=2或-1;
因为y=0时,x=0,
所以此函数图象与x轴的交点坐标为(0,0),其对轴为直线x=0,即y轴.
故答案为2或-1;(0,0);y轴.
点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax
2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-
;抛物线与y轴的交点坐标为(0,c);当b
2-4ac>0,抛物线与x轴有两个交点;当b
2-4ac=0,抛物线与x轴有一个交点;当b
2-4ac<0,抛物线与x轴没有交点.