精英家教网 > 初中数学 > 题目详情
(1)若代数式a2m-1b与-a5bm+n是同类项,求(m+n)2006的值;
(2)已知s+t=1.3m-2n=9,求(2s+9m+2)-2(3n-t-1)的值
解:(1)因为代数式a2m-1b与-a5bm+n是同类项,所以m+n=1.
所以(m+n)2006=1;
(2)原式=2s+9m+2-6n+2t+2 
=2(s+t)+3(3m-2n)+4
=2×1+3×9+4=33.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网精英家教网小知识:如图,我们称两臂长度相等(即CA=CB)的圆规为等臂圆规.当等臂圆规的两脚摆放在一条直线上时,若张角∠ACB=x°,则底角∠CAB=∠CBA=(90-
x2
)°.
请运用上述知识解决问题:如图,n个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,…
精英家教网
(1)①由题意可得∠A1A2C1=
 
°;
②若A2M平分∠A3A2C1,则∠MA2C2=
 
°;
(2)∠An+1AnCn=
 
°(用含n的代数式表示);
(3)当n≥3时,设∠An-1AnCn-1的度数为a,∠An+1AnCn-1的角平分线AnN与AnCn构成的角的度数为β,那么a与β之间的等量关系是
 
,请说明理由.(提示:可以借助下面的局部示意图)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

小知识:如图,我们称两臂长度相等(即CA=CB)的圆规为等臂圆规.当等臂圆规的两脚摆放在一条直线上时,若张角∠ACB=x°,则底角∠CAB=∠CBA=(90-数学公式)°.
请运用上述知识解决问题:如图,n个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,…

(1)①由题意可得∠A1A2C1=______°;
②若A2M平分∠A3A2C1,则∠MA2C2=______°;
(2)∠An+1AnCn=______°(用含n的代数式表示);
(3)当n≥3时,设∠An-1AnCn-1的度数为a,∠An+1AnCn-1的角平分线AnN与AnCn构成的角的度数为β,那么a与β之间的等量关系是______,请说明理由.(提示:可以借助下面的局部示意图)

查看答案和解析>>

科目:初中数学 来源:北京期末题 题型:解答题

小知识:如图,我们称两臂长度相等(即CA=CB)的圆规为等臂圆规。当等臂圆规的两脚摆放在一条直线上时,若张角∠ACB=x°,则底角∠CAB=∠CBA=(90-)°请运用上述知识解决问题: 如图,n个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:
∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,…

 
(1)①由题意可得∠A1A2C1=_________;
②若A2M平分∠A3A2C1,则∠MA2C2=__________;
(2)∠An+1AnCn____________;(用含n的代数式表示)
(3)当n≥3时,设∠An-1AnCn-1的度数为,∠An+1AnCn-1的角平分线AnM与AnCn构成的角的度数为,那么之间的等量关系是__________,请说明理由。(提示:可以借助下面的局部示意图)

查看答案和解析>>

科目:初中数学 来源: 题型:

若关于ab的代数式a2m-1ba5bm+n是同类项,那么(mn+5)2004等于(  )

A.0    B.1    C.-1  D.52004

查看答案和解析>>

同步练习册答案