精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,A(6a)B(b0)M(0c)P点为y轴上一动点,且(b2)2+|a6|+0

(1)求点BM的坐标;

(2)P点在线段OM上运动时,试问是否存在一个点P使SPAB13,若存在,请求出P点的坐标与AB的长度;若不存在,请说明理由.

(3)不论P点运动到直线OM上的任何位置(不包括点OM),∠PAM、∠APB、∠PBO三者之间是否都存在某种固定的数量关系,如果有,请利用所学知识找出并证明;如果没有,请说明理由.

【答案】(1)M(0,6),B(2,0),A(6,6);(2)AB=2;(3)①当点P在线段OM上时,结论:∠APB+∠PBO=∠PAM;理由见解析;②当点PMO的延长线上时,结论:∠APB+∠PBO=∠PAM.理由见解析;③当点POM的延长线上时,结论:∠PBO=∠PAM+∠APB.理由见解析;

【解析】

(1)利用非负数的性质,求出a、b、c即可解决问题;

(2)设P(0,m).根据SPAB=S梯形AMOB-SAPM-SPBO,构建方程即可解决问题;

(3)分三种情形,分别画出图形解决问题即可

(1)∵(b-2)2+|a-6|+=0,

∵(b-2)2,≥0,|a-6|≥0,≥0,

∴a=6,b=2,c=6.

∴M(0,6),B(2,0),A(6,6),

(2)设P(0,m).

∵S△PAB=13,四边形AMOB是直角梯形,

(6+2)6-m2-(6-m)6=13,

∴m=

∴P(0,),

AB==2

(3)①如图2-1中,当点P在线段OM上时,结论:∠APB+∠PBO=∠PAM;

理由:作PQ∥AM,则PQ∥AM∥ON,

∴∠1=∠PAM,∠2=∠PBO,

∴∠1+∠2=∠PAM+∠PBO,

∠APB=∠PAM+∠PBO,

∠APB+∠PBO=∠PAM;

②如图2-2中所示,当点PMO的延长线上时,结论:∠APB+∠PBO=∠PAM.

理由:∵AM∥OB,

∴∠PAM=∠3,

∵∠3=∠APB+∠PBO,

∴∠APB+∠PBO=∠PAM.

③如图2-3中,当点POM的延长线上时,结论:∠PBO=∠PAM+∠APB.

理由:∵AM∥OB,

∴∠4=∠PBO,

∵∠4=∠PAM+∠APB,

∴∠PBO=∠PAM+∠APB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下图是由几个相同的小正方体搭成的几何体,

(1)搭成这个几何体需要      个小正方体;

(2)画出这个几何体的主视图和左视图;

(3)在保持主视图和左视图不变的情况下,最多可以拿掉n个小正方体,则n=     请在备用图中画出拿掉n个小正方体后新的几何体的俯视图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线C1:y=x2+2x﹣3与x轴交于点A,B(点A在点B左侧),与y轴交于点C,抛物线C2:y=ax2+bx+c经过点B,与x轴的另一个交点为E(﹣4,0),与y轴交于点D(0,2).
(1)求抛物线C2的解析式;
(2)设点P为线段AB上一动点(点P不与点A,B重合),过点P作x轴的垂线交抛物线C1于点M,交抛物线C2于点N.
①当四边形AMBN的面积最大时,求点P的坐标;
②当CM=DN≠0时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知在△ABC中,ABACD为线段BC上一点,E为线段AC上一点,且ADAE

(1)若∠ABC60°,∠ADE70°,求∠BAD与∠CDE的度数;

(2)设∠BADα,∠CDEβ,试写出αβ之间的关系并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=2x2﹣x﹣3.
(1)求函数图象的顶点坐标,与坐标轴交点坐标,并画出函数大致图象;

(2)根据图象直接回答:当x为何值时,y<0?当x为何值时y>﹣3?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图A在数轴上所对应的数为﹣2

1)点B在点A右边距A4个单位长度,求点B所对应的数;

2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点 B 以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求AB两点间距离.

3)在2)的条件下,现A点静止不动,B点再以每秒2个单位长度沿数轴向左运动时,经过多长时间AB两点相距4个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠B=90°,AB=8 cm,BC=6 cm,P,Q是△ABC边上的两个动点,点P从点A开始沿A→B方向运动,且速度为1 cm,点Q从点B开始沿B→C方向运动,且速度为2 cm/s,它们同时出发,设运动的时间为t s.

(1)运动几秒时,△APC是等腰三角形?

(2)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骰子是一种特别的数字立方体(如图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是(  ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:

(1)点B′的坐标;

(2)直线AM所对应的函数关系式.

查看答案和解析>>

同步练习册答案