精英家教网 > 初中数学 > 题目详情

【题目】某数学课外活动小组的同学.利用所学的数学知识,测底部可以到达的学校操场上的旗杆AB高度,他们采用了如下两种方法:

方法1:在地面上选一点C,测得CB40米,用高为1.6米的测角仪在C处测得旗杆顶部A的仰角为28°;

方法2:在相同时刻测得旗杆AB的影长为17.15米,又测得已有的2米高的竹杆的影长为1.5米.

你认为这两种方法可行吗?若可行,请你任选一种方法算出旗杆高度(精确到0.1米)若不可行,自己另设计一种测量方法(旗杆顶端不能到达),算出旗杆高度(结果可用字母表示)

【答案】可行,旗杆高度约为22.9米.

【解析】

方法1:在直角三角形AED中,利用BC的长和已知的角的度数,利用正切函数可求得AB的长.

方法2:根据物高与影长的关系,将实际问题转化为数学问题.

解:方法1:由题意则DEBC,即DE40米.

在直角△ADE中,∠ADE28°,

AEDEtan28°=40tan28°(米).

ABAE+EB40tan28°+1.6(米).

答:旗杆高度为(40tan28°+1.6)米.

方法2:∵物高与影长成比例,

∴旗杆的高度:17.1521.5

∴旗杆的高度=34.3÷1.522.9米.

答:旗杆高度约为22.9米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.

(1)小明选择去蜀南竹海旅游的概率为

(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC的边OAOC在坐标轴上,点B的坐标为(44).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BDy轴交于点E,连接PE.设点P运动的时间为t(s)

(1)PBD的度数为 ,点D的坐标为 (t表示)

(2)t为何值时,PBE为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是经过已知直线外一点作这条直线的垂线的尺规作图过程.

已知:直线和直线外一点.

求作:直线的垂线,使它经过.

作法:如图2.

1)在直线上取一点,连接

2)分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点,连接于点

3)以点为圆心,为半径作圆,交直线于点(异于点),作直线.所以直线就是所求作的垂线.

请你写出上述作垂线的依据:______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为2的正方形在平面直角坐标系中的位置如图所示,点是边的中点,连接,点在第一象限,且.以直线为对称轴的抛物线过两点.

1)求抛物线的解析式;

2)点从点出发,沿射线每秒1个单位长度的速度运动,运动时间为.过点于点,当为何值时,以点为顶点的三角形与相似?

3)点为直线上一动点,点为抛物线上一动点,是否存在点,使得以点为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A0m),Bn0),(mn0),点EAD上,AEAB,点Fy轴上,OFOBBF的延长线与DA的延长线交于点MEFAB交于点N

1)试求点E的坐标(用含mn的式子表示);

2)求证:AMAN

3)若ABCD12cmBC20cm,动点PB出发,以2cm/s的速度沿BCC运动的同时,动点QC出发,以vcm/s的速度沿CDD运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】东坡商贸公司购进某种水果成本为20/,经过市场调研发现,这种水果在未来48天的销售单价(元/)与时间(天)之间的函数关系式为整数,且其日销售量()与时间(天)的关系如下表:

时间(天)

1

3

6

10

20

日销售量

118

114

108

100

80

1)已知之间的变化符合一次函数关系,试求在第30天的日销售量;

2)哪一天的销售利润最大?最大日销售利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,以边长为8的正方形纸片ABCD的边AB为直径作⊙O,交对角线AC于点E

1)线段AE= 

2)如图2,以点A为端点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM剪掉,使RtADM绕点A逆时针旋转(如图3),设旋转角为αα150°),旋转过程中AD与⊙O交于点F

①当α=30°时,请求出线段AF的长;

②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;

③当α=   °时,DM与⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CECA,连接AEFAB上的一点,且BFDE,连接FC

1)若DE1CF,求CD的长;

2)如图2,点G为线段AE的中点,连接BGACH,若∠BHC+ABG60°,求证:AF+CEAC

查看答案和解析>>

同步练习册答案