精英家教网 > 初中数学 > 题目详情
精英家教网正方形ABCD中,AC、BD交于O,∠EOF=90°,已知AE=3,CF=4,则EF的长为
 
分析:求证△AEO≌△BFO,可得AE=BF,求证△BOE≌△COF,可得BE=CF,根据EF=
BE2+BF2
即可求得EF的值.
解答:精英家教网解:∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3,
∵AC,BD为正方形的对角线,
∴∠OAE=∠OBF,OA=OB,
在△AOE和△BOF中,
∠1=∠3
OA=OB
∠OAE=∠OBF

∴△AOE≌△BOF,
∴AE=BF=3,
同理可证:△BOE≌△COF,
即CF=BE=4,
∴EF=
BE2BF2
=5.
故答案为:5.
点评:本题考查了正方形各边长相等、各内角为直角的性质,考查了对角线互相垂直平分的性质,考查了全等三角形的判定和对应边相等的性质,本题中求证CF=BE,AE=BF是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•临沂)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在正方形ABCD中,M为AD中点,N为CD中点,试求tan∠MBN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在边长为1的正方形ABCD中,点M、N、O、P分别在边AB、BC、CD、DA上.如果AM=BM,DP=3AP,则MN+NO+OP的最小值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,画2个半径为a的四分之一圆,用代数式表示阴影部分的面积为
2a2-
1
2
πa2
2a2-
1
2
πa2
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,AB=4,E在BC边上,BE=1,F是AC上一动点,则EF+BF的最小值是
5
5

查看答案和解析>>

同步练习册答案