精英家教网 > 初中数学 > 题目详情
18.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.
(1)求证:△BAD≌△CAE.
(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;
(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;
(4)如图③,若∠BAC=∠DAE=a,直接写出∠BFC的度数(不需说明理由)

分析 (1)由等边三角形的性质得出AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.
(2)判定BD与CE的关系,可以根据角的大小来判定.由∠BAC=∠DAE可得∠BAD=∠CAE,进而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=∠DAE=90°,所以BD⊥CE.
(3)根据①的∠CBF+∠BCF=∠ABC+∠ACB,所以∠BFC=∠BAC,再由∠BAC=∠DAE=60°,所以∠BFC=60°
(4)根据②∠BFC=∠BAC,所以∠BFC=α

解答 解:(1)证明:∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE
在△BAD与△CAE中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
(2)BD与CE相互垂直,BD=CE.
由(1)知,△BAD≌△CAE(SAS),
∴∠ABD=∠ACE,BD=CE,
∵∠BAC=90°,
∴∠CBF+∠BCF=∠ABC+∠ACB=90°,
∴∠BFC=90°
∴BD⊥CE.

解:(3)由题①得∠CBF+∠BCF=∠ABC+∠ACB,
∵∠BAC=∠DAE=60°,
∴∠CBF+∠BCF=∠ABC+∠ACB,
∴∠BFC=∠BAC
∴∠BFC=60°.
(4)由题①得∠CBF+∠BCF=∠ABC+∠ACB,
∵∠BAC=∠DAE=α,
∴∠CBF+∠BCF=∠ABC+∠ACB,
∴∠BFC=∠BAC
∴∠BFC=α.

点评 此题是三角形综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,等边三角形的性质以及角之间的关系,判断出∠BAD=∠CAE是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.若x2+kx-24=(x-m)(x+n),其中k、m、n均为整数,则k的值为±23,±10,±5,±2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)因式分解:2a4b-32b
(2)计算:4(x+1)2-(2x-5)(2x+5)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.因式分解:
(1)-18x3y+8xy3
(2)(x2-4x)2+8(x2-4x)+16.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.化简以下各式
(1)$\sqrt{6+2\sqrt{5}}$的结果为1+$\sqrt{5}$;
(2)$\sqrt{3+\sqrt{5}}$的结果为$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{10}}{2}$;
(3)$\sqrt{7-3\sqrt{5}}$的结果为$\frac{3}{2}$-$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.在代数式$\frac{x}{\sqrt{x+1}}$中,x的取值范围是(  )
A.x≥-1B.x>-1C.x>-1且x≠0D.x≠0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,已知梯形ABCD中,AB∥CD,对角线AC、BD相交于点O,那么下列结论正确的是(  )
A.△AOD∽△BOCB.△ACD∽△BDCC.△AOB∽△CODD.△ABD∽△BAC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.直线y=kx+2与x轴、y轴分别交于点A,B,点C(-1,a)是直线与双曲线y=$\frac{m}{x}$的一个交点,过点C作CD⊥y轴,垂足为D,且△BCD的面积为1.
(1)求双曲线的解析式;
(2)若在y轴上有一点E,使得以E,A,B为顶点的三角形与△BCD相似,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案