【题目】如图,正方形ABCD中,AB=3,点E是对角线AC上的一点,连接DE,过点E作EF⊥DE,交AB于点F,连接DF交AC于点G,下列结论:
①DE=EF;②∠ADF=∠AEF;③DG2=GEGC;④若AF=1,则EG=,其中结论正确的个数是( )
A. 1B. 2C. 3D. 4
【答案】D
【解析】
证明△DCE≌△BCE,得DE=BE,证出EF=BE,则结论①正确;易证∠EDF=∠DFE=45°,又∠DAC=45°,∠AGD=∠EGF,则∠ADF=∠AEF,故②正确;证出△DGE∽△CGD,由比例线段可得出结论DG2=GEGC,③正确;先求出CE长,将△DEC绕点A逆时针旋转90°得到△DMA,连接MG,易证△DMG≌△DEG,△AMG是直角三角形,得出EG2=AG2+CE2,设EG=x,则列出方程可求出EG=,则④正确.
解:如图,连接BE,
∵四边形ABCD为正方形,
∴CB=CD,∠BCE=∠DCE=45°,
在△BEC和△DEC中,
,
∴△DCE≌△BCE(SAS),
∴DE=BE,∠CDE=∠CBE,
∴∠ADE=∠ABE,
∵∠DAB=90°,∠DEF=90°,
∴∠ADE+∠AFE=180°,
∵∠AFE+∠EFB=180°,
∴∠ADE=∠EFB,
∴∠ABE=∠EFB,
∴EF=BE,
∴DE=EF,故①正确;
∵∠DEF=90°,DE=EF,
∴∠EDF=∠DFE=45°,
∵∠DAC=45°,∠AGD=∠EGF,
∴∠ADF=∠AEF,故②正确;
∵∠GDE=∠DCG=45°,∠DGE=∠CGD,
∴△DGE∽△CGD,
∴,
即DG2=GECG,故③正确;
如图,过点E作EN⊥AB于点N,
∵AF=1,AB=3,
∴BF=2,AC=,
∵BE=EF,
∴FN=BN=1,
∴AN=2,
∴,
∴,
将△DEC绕点A逆时针旋转90°得到△DMA,连接MG,
易证△DMG≌△DEG(SAS),△AMG是直角三角形,
∴MG=GE,
∴MG2=EG2=AM2+AG2=CE2+AG2,
设EG=x,则AG=,
∴,
解得:x=,即EG=,故④正确.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE,动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.
(1)求点B的坐标和OE的长;
(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;
(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.
①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.
②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把有两边对应相等,且夹角互补(不相等)的两个三角形叫做“互补三角形”,如图1,□ABCD中,△AOB和△BOC是“互补三角形”.
(1)写出图1中另外一组“互补三角形”_______;
(2)在图2中,用尺规作出一个△EFH,使得△EFH和△EFG为“互补三角形”,且△EFH和△EFG在EF同侧,并证明这一组“互补三角形”的面积相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=12cm,AD=CD=8cm,动点E从点A出发沿AB以每秒1cm的速度向点B运动,动点F从点B出发沿BA以每秒1cm的速度向点A运动,过点E作AB的垂线交折线AD-DC于点G,以EG、EF为邻边作矩形EFHG,设点E、F运动的时间为t(秒),矩形EFHG与四边形ABCD重叠部分的面积为S(cm2).
(1)求EG的长(用含t的代数式表示);
(2)当t为何值时,点G与点D重合?
(3)当点G在DC上时,求S(cm2)与t(秒)的函数关系式(S>0);
(4)连接EH、GF、AC、BD,在运动过程中,当这四条线段所在的直线有两条平行时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:
根据图表解答下列问题:
(1)请将条形统计图补充完整;
(2)在抽样数据中,产生的有害垃圾共 吨;
(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.
(1)该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了32分钟;
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米
其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是反比例函数y=图象上一点,过点A作x轴的平行线交反比例函数y=﹣的图象于点B,点C在x轴上,且S△ABC=,则k=( )
A. 6B. ﹣6C. D. ﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查每个被调查的学生必须选择而且只能选择其中一门对调查结果进行整理,绘制成如下两幅不完整的统计图请结合图中所给信息解答下列问题:
本次调查的学生共有______人,在扇形统计图中,m的值是______.
分别求出参加调查的学生中选择绘画和书法的人数,并将条形统计图补充完整.
该校共有学生2000人,估计该校约有多少人选修乐器课程?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com