精英家教网 > 初中数学 > 题目详情

【题目】如图①,在△ABC中,ABAC3,∠BAC100°DBC的中点.

小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.

请你帮助小明继续探究,并解答下列问题:

1)当点E在直线AD上时,如图②所示.

①∠BEP   °

②连接CE,直线CE与直线AB的位置关系是   

2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.

3)当点P在线段AD上运动时,求AE的最小值.

【答案】1)①50°;②ABEC;(2)详见解析;(33.

【解析】

(1)①根据∠BPE=80°,PB=PE即可求出答案;②根据“AB=AC,∠BAC=100°”,可以得到AE垂直平分线段BC,从而得到EB=EC,进而得到∠ECB=∠EBC,即可证得∠ABC=∠ECB,从而得到答案;

(2)以P为圆心,PB为半径作⊙P,得到PB=PC,再根据同弧所对的圆周角是圆心的一半求出∠BCE的度数从而得到答案;

(3)作AH⊥CE于H,点E在射线CE上运动,点P在线段AD上运动,当点P运动到与点A重合时,AE取最小值,故而得到答案.

解:(1)①如图②中,

∵∠BPE=80°,PB=PE,

∴∠PEB=∠PBE=50°,

②结论:AB∥EC.

理由:∵AB=AC,BD=DC,

∴AD⊥BC,

∴∠BDE=90°,

∴∠EBD=90°﹣50°=40°,

∵AE垂直平分线段BC,

∴EB=EC,

∴∠ECB=∠EBC=40°,

∵AB=AC,∠BAC=100°,

∴∠ABC=∠ACB=40°,

∴∠ABC=∠ECB,

∴AB∥EC.

故答案为50,AB∥EC.

(2)如图③中,以P为圆心,PB为半径作⊙P.

∵AD垂直平分线段BC,

∴PB=PC,

∴∠BCE=∠BPE=40°,

∵∠ABC=40°,

∴AB∥EC.

(3)如图④中,作AH⊥CE于H,

∵点E在射线CE上运动,点P在线段AD上运动,

∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一艘船由A港沿北偏东65°方向航行kmB港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向.

求:(1)∠C的度数;

2AC两港之间的距离为多少km.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:(1)如图①,在RtABC中,ABACDBC边上一点(不与点BC重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BCDCEC之间满足的等量关系式为   

探索:(2)如图②,在RtABCRtADE中,ABACADAE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段ADBDCD之间满足的等量关系,并证明你的结论;

应用:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC45°.若BD9CD3,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点ECD的中点,AF平分∠BAEBC于点F,将△ADE绕点A顺时针旋转90°△ABG,则CF的长为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 RtABC 中BC=2,以 BC 的中点 O 为圆心的⊙O 分别与 ABAC 相切于 DE 两点,的长为(

A.B.C.πD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=ABC,BEAC,垂足为点E,BDE是等边三角形,若AD=4,则线段BE的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了响应低碳环保,绿色出行的公益活动,小燕和妈妈决定周日骑自行车去图书馆借书.她们同时从家出发,小燕先以150/分的速度骑行一段时间,休息了5分钟,再以m/分钟的速度到达图书馆,而妈妈始终以120/分钟的速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图像,解答下列问题:

1)图书馆到小燕家的距离是 米;

2a= b= m=

3)妈妈行驶的路程y(米)关于时间x(分钟)的函数解析式是 ;定义域是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD是平行四边形,OB=OC=2AB=.

(1)求点D的坐标,直线CD的函数表达式;

(2)已知点P是直线CD上一点,当点P满足SPAO=SABO时,求点P的坐标;

(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F(不与AB重合),使以A C FM为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】)甲乙两人在相同条件下完成了5次射击训练,两人的成绩如图所示.

1)甲射击成绩的众数为 环,乙射击成绩的中位数为 环;

2)计算两人射击成绩的方差;

3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?

查看答案和解析>>

同步练习册答案