分析 (1)要证明AE=DE当然要利用这些条件首先证明三角形全等,利用对应边相等或对应角相等就可以得到AE=AD,据此可得;
(2)从(1)中所列条件任选一组,根据“AAS”或“ASA”证明△ABE≌△DCE即可得.
解答 解:(1)能推出AE=DE的所有条件为:①③或①④或②③或②④,
故答案为:①③或①④或②③或②④;
(2)选①③证明:
在△ABE和△DCE中,
∵$\left\{\begin{array}{l}{∠B=∠C}\\{∠AEB=∠DEC}\\{AB=DC}\end{array}\right.$,
∴△ABE≌△DCE(AAS),
∴AE=DE;
①④:在△ABE和△DCE中,
∵$\left\{\begin{array}{l}{∠BAE=∠CDE}\\{∠BEA=∠CED}\\{AB=DC}\end{array}\right.$,
∴△ABE≌△DCE(AAS),
∴AE=DE;
②③:在△ABE和△DCE中,
∵$\left\{\begin{array}{l}{∠B=∠C}\\{BE=CE}\\{∠BEA=∠CED}\end{array}\right.$,
∴△ABE≌△DCE(ASA),
∴AE=DE;
②④:在△ABE和△DCE中,
∵$\left\{\begin{array}{l}{∠BAE=∠CDE}\\{∠BEA=∠CED}\\{BE=CE}\end{array}\right.$,
∴△ABE≌△DCE(AAS),
∴AE=DE.
点评 本题考查了全等三角形的判定及性质;熟练掌握全等三角形的判定,三角形全等的证明是正确解答本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com