分析 根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高,再利用勾股定理得出AH的长.
解答 解:∵四边形ABCD是菱形,
∴AC⊥BD,OA=OC=$\frac{1}{2}$AC=4cm,OB=OD=3cm,
∴AB=5cm,
∴S菱形ABCD=$\frac{1}{2}$AC•BD=AB•DH,
∴DH=$\frac{AC×BD}{2AB}$=$\frac{24}{5}$(cm),
∴AH=$\sqrt{A{D}^{2}-D{H}^{2}}$=$\frac{7}{5}$(cm).
点评 此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半等知识,得出DH的长是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com