分析 (1)利用抛物线与x轴的交点为对称点可得到抛物线的对称轴;
(2)观察函数图象,利用x=-1,y<0和x=2,y>0求解;
(3)根据二次函数的性质求解;
(4)根据抛物线与x轴的交点问题求解;
(5)观察图象,写出抛物线在x轴上方或与抛物线与x轴的交点或抛物线在x轴下方所对应的自变量的取值范围或取值.
解答 解:(1)抛物线与x轴的交点坐标为(-3,0)和(1,0),
所以抛物线的对称轴为直线x=-1;
(2)∵x=-1,y<0,
∴a-b+c<0;
∵x=2,y>0,
∴4a+2b+c>0;
(3)当x<-1时,y随x增大而减小;
(4)方程ax2+bx+c=0的解为x1=-3,x2=1;
(5)当y>0时,x的取值范围为x<-3或x>1;当y=0时,x=-3或1;当y<0时,x的取值范围为-3<x<1.
故答案为x=-1;<,>;<-1;x1=-3,x2=1;x<-3或x>1;-3或1;-3<x<1.
点评 本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数(△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点).也考查了观察函数图象的能力.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4$\sqrt{5}$ | B. | 3$\sqrt{5}$ | C. | 2$\sqrt{5}$ | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com