精英家教网 > 初中数学 > 题目详情
如图,已知ED∥BC,∠EAB=∠BCF,
(1)四边形ABCD为平行四边形;
(2)求证:OB2=OE•OF;
(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.

【答案】分析:(1)由ED∥BC,∠EAB=∠BCF,可证得∠EAB=∠D,即可证得AB∥CD,则得四边形ABCD为平行四边形;
(2)由平行线分线段成比例定理,即可证得OB2=OE•OF;
(3)首先作辅助线:连接BD,交AC于点H,连接OD,易证得△ODF∽△OED,即可证得OD2=OE•OF,则得到OB=OD,又由OH⊥BD,即可证得四边形ABCD为菱形.
解答:解:(1)∵DE∥BC,
∴∠D=∠BCF,
∵∠EAB=∠BCF,
∴∠EAB=∠D,
∴AB∥CD,
∵DE∥BC,
∴四边形ABCD为平行四边形;

(2)∵DE∥BC,

∵AB∥CD,


∴OB2=OE•OF;

(3)连接BD,交AC于点H,
∵DE∥BC,
∴∠OBC=∠E,
∵∠OBC=∠ODC,
∴∠ODC=∠E,
∵∠DOF=∠DOE,
∴△ODF∽△OED,

∴OD2=OE•OF,
∴OB2=OF•OE,
∴OB=OD,
∵平行四边形ABCD中BH=DH,
∴OH⊥BD,
∴四边形ABCD为菱形.
点评:此题考查了相似三角形的判定与性质,平行四边形的性质,菱形的判定以及平行线分线段成比例定理等.综合性很强,图形较复杂,解题时要注意识图,灵活应用数形结合思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知ED∥BC,∠EAB=∠BCF,
(1)四边形ABCD为平行四边形;
(2)求证:OB2=OE•OF;
(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区二模)如图,已知ED∥BC,GB2=GE•GF
(1)求证:四边形ABCD为平行四边形;
(2)连接GD,若GB=GD,求证:四边形ABCD为菱形.

查看答案和解析>>

科目:初中数学 来源:2013年5月中考数学模拟试卷(14)(解析版) 题型:解答题

如图,已知ED∥BC,∠EAB=∠BCF,
(1)四边形ABCD为平行四边形;
(2)求证:OB2=OE•OF;
(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.

查看答案和解析>>

科目:初中数学 来源:2013年湖南省湘潭市中考数学模拟试卷(解析版) 题型:解答题

如图,已知ED∥BC,∠EAB=∠BCF,
(1)四边形ABCD为平行四边形;
(2)求证:OB2=OE•OF;
(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.

查看答案和解析>>

科目:初中数学 来源:2012年北师大版初三中考数学模拟试卷(一)(解析版) 题型:解答题

如图,已知ED∥BC,∠EAB=∠BCF,
(1)四边形ABCD为平行四边形;
(2)求证:OB2=OE•OF;
(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.

查看答案和解析>>

同步练习册答案