精英家教网 > 初中数学 > 题目详情
抛物线y=ax2+bx+c经过点(-1,0),(3,0)(0,-3),求它的开口方向、对称轴和顶点坐标,并画出草图.
解法一:把(-1,0),(3,0),(0,-3),代入y=ax2+bx+c,得:
a-b+c=0
9a+3b+c=0
c=-3

解得:
a=1
b=-2
c=-3

则函数解析式为y=x2-2x-3,即y=(x-1)2-4,
∴开口向上,对称轴为x=1,顶点坐标为(1,-4);

解法二:设函数的解析式为y=a(x+1)(x-3),
把(0,-3)代入得函数的解析式为y=(x+1)(x-3),
即y=x2-2x-3,写成顶点式y=(x-1)2-4,
∴开口向上,对称轴为x=1,顶点坐标为(1,-4).
草图为:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为
5
.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在如图的直角坐标系中,已知点A(1,0);B(0,-2),将线段AB绕点A按逆时针方向旋转90°至AC.
(1)求点C的坐标;
(2)若抛物线y=-
1
2
x2+ax+2经过点C.
①求抛物线的解析式;
②在抛物线上是否存在点P(点C除外)使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一种计算机控制的线切割机床,它可以自动切割只有直线和抛物线组成的零件,工作时只要先确定零件上各点的坐标及线段与抛物线的关系式作为程序输入计算机即可.今有如图所示的零件需按A?B?C?D?A的路径切割,请按下表将程序编完整.
线段或抛物线起始坐标关系式终点坐标
抛物线APB
线段BC(1,0)x=1(1,-1)
线段CD(1,-1)
线段AD(1,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c过点A(-1,0)、B(3,0)、C(0,3)
(1)求此抛物线的解析式.
(2)设抛物线的顶点为D,连接CD、BD,求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
2
x2+bx+c经过x轴上点A(-2,0),B(4,0),与y轴交于点C.
(1)求a、b的值;
(2)试判断△BOC的外接圆P与直线AC的位置关系,并说明理由;
(3)将△AOC绕点O旋转一周,旋转过程中,AC对应的直线平行于BC,试求旋转后对应的点A的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,过点F(0,1)的直线y=kx+b与抛物线y=
1
4
x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2>0).
(1)求b的值.
(2)求x1•x2的值.
(3)分别过M,N作直线l:y=-1的垂线,垂足分别是M1和N1.判断△M1FN1的形状,并证明你的结论.
(4)对于过点F的任意直线MN,是否存在一条定直线m(m是常数),使m与以MN为直径的圆相切?如果有,请求出这条直线m的解析式;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为(5,5
3
)
,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-
1
40
x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米.(精确到1米)

查看答案和解析>>

同步练习册答案