精英家教网 > 初中数学 > 题目详情
(2003•天津)已知,如图⊙O1与⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点.
(1)求证:AB⊥AC;
(2)若r1、r2分别为⊙O1、⊙O2的半径,且r1=2r2.求的值.

【答案】分析:(1)过点A作两圆的内公切线交BC于点O,再利用切线的性质,证明OA=OB=OC即可;
(2)连续OO1、OO2与AB、AC分别交于点E、F,先利用切线的性质证明四边形OEAF是矩形;
再利用三角形的形似、直角三角形的特点和三角函数求出的值.
解答:(1)证明:过点A作两圆的内公切线交BC于点O.
∵OA、OB是⊙O1的切线,
∴OA=OB.
同理OA=OC,
∴OA=OB=OC.
于是△BAC是直角三角形,∠BAC=90°,
所以AB⊥AC.

(2)解:连接OO1、OO2与AB、AC分别交于点E、F.
∵OA、OB是⊙O1的切线.
∴OO1⊥AB,
同理OO2⊥AC.
根据(1)的结论AB⊥AC,可知四边形OEAF是矩形,有∠EOF=90°.
连接O1O2,有OA⊥O1O2.在Rt△O1OO2中,有Rt△O1AO∽Rt△OAO2

于是OA2=O1A•O2A=r1•r2=2r22
∴OA=r2
又∵∠ACB是⊙O2的弦切角,
∴∠ACB=∠AO2O.
在Rt△OAO2中,tan∠AO2O=
=tan∠ACB=tan∠AO2O=
点评:本题综合考查了直线与圆、圆与圆的位置关系,全等三角形的判定、图形的平移变换等多个知识点.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:填空题

(2003•天津)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为   

查看答案和解析>>

科目:初中数学 来源:2003年天津市中考数学试卷(解析版) 题型:填空题

(2003•天津)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为   

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2003•天津)已知,如图⊙O1与⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点.
(1)求证:AB⊥AC;
(2)若r1、r2分别为⊙O1、⊙O2的半径,且r1=2r2.求的值.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《圆》(08)(解析版) 题型:填空题

(2003•天津)已知圆内接正三角形的边长为a,则同圆外切正三角形的边长为   

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《一元二次方程》(07)(解析版) 题型:解答题

(2003•天津)已知关于x的方程x2-(q+p+1)x+p=0(q≥0)的两个实数根为α、β,且α≤β.
(1)试用含有α、β的代数式表示p、q;
(2)求证:α≤1≤β;
(3)若以α、β为坐标的点M(α、β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(,1),C(1,1),问是否存在点M,使p+q=?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案