小题1:(1)∵四边形ABCD和四边形AEFG是正方形
∴AB=AD,AE=AG,∠BAD=∠EAG=90º
∴∠BAE+∠EAD=∠DAG+∠EAD
∴∠BAE=∠DAG
∴△ BAE≌△DAG …………2分
小题2:(2)∠FCN=45º …………1分
理由是:作FH⊥MN于H
∵∠AEF=∠ABE=90º
∴∠BAE +∠AEB=90º,∠FEH+∠AEB=90º
∴∠FEH=∠BAE
又∵AE=EF,∠EHF=∠EBA=90º
∴△EFH≌△ABE …………2分
∴FH=BE,EH=AB=BC,∴CH=BE=FH
∵∠FHC=90º,∴∠FCH=45º …………1分
小题3:(3)当点E由B向C运动时,∠FCN的大小总保持不变,…………1分
理由是:作FH⊥MN于H
由已知可得∠EAG=∠BAD=∠AEF=90º
结合(1)(2)得∠FEH=∠BAE=∠DAG
又∵G在射线CD上
∠GDA=∠EHF=∠EBA=90º
∴△EFH≌△GAD,△EFH∽△ABE ……2分
∴EH=AD=BC=b,∴CH=BE,
∴==
∴在Rt△FEH中,tan∠FCN=== …………2分
∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=