【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x1<1,有下列结论:①c>0;②﹣3<x2<﹣2;③a+b+c<0;④b2﹣4ac>0;⑤已知图象上点A(4,y1),B(1,y2),则y1>y2.其中,正确结论的个数有( )
A.5B.4C.3D.2
【答案】C
【解析】
由图象可知当x=0时,y<0,所以c<0;函数与x轴有两个交点,所以△>0,即b2﹣4ac>0;当x=1时,y>0,所以a+b+c>0;由函数的对称性可知,对称轴为x=﹣1,0<x1<1,则另一个交点为﹣3<x2<﹣2;由函数在对称轴的右侧y随x值的增大而增大,可求y1>y2.
解:由图象可知,当x=0时,y<0,
∴c<0,
∴①不正确;
∵对称轴为x=﹣1,0<x1<1,
∴﹣3<x2<﹣2,
∴②正确;
当x=1时,y>0,
∴a+b+c>0,
∴③不正确;
∵函数与x轴有两个交点,
∴△>0,即b2﹣4ac>0,
∴④正确;
由点A(4,y1),B(1,y2)可知,点A、B在对称轴的右侧,
∴y随x值的增大而增大,
∴y1>y2,
故⑤正确;
正确的有3个,
故选:C.
科目:初中数学 来源: 题型:
【题目】某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.
(1)当销售该纪念品每天能获得利润2160元时,每件的销售价应为多少?
(2)当每件的销售价为多少时,销售该纪念品每天获得的利润最大?并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是二元一次方程组的解(OB>OC).
(1)求点A和点B的坐标;
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.
①当0<t<3时,求m关于t的函数关系式;
②当m=时,求点P的横坐标t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠B=50°,AC=6,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠B=50°,AC=6,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,半径为1的与轴正半轴和轴正半轴分别交于两点,直线:与轴和轴分别交于两点.
(l)当直线与相切时,求出点的坐标和点的坐标;
(2)如图2,当点在线段上时,直线与交于两点(点在点的上方),过点作轴,与交于另一点,连结交轴于点.
①如图3,若点与点重合时,求的长并写出解答过程;
②如图2,若点与点不重合时,的长是否发生变化,若不发生变化,请求出的长并写出解答过程;若发生变化,请说明理由.
(3)如图4,在(2)的基础上,连结,将线段绕点逆时针旋转到,若点在的延长线时,请用等式直接表示线段,之间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com