精英家教网 > 初中数学 > 题目详情
23、观察下面各式规律:12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2…写出第n行的式子,并证明你的结论.
分析:本题考查学生的观察归纳的能力.仔细观察各式的结构特征,不难发现式子的左侧是连续两整数及它们乘积的平方和,右侧是它们的乘积与1的和的平方.然后,证明结论.
解答:解:第n个式子:n2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2
证明:因为左边=n2+[n(n+1)]2+(n+1)2
=n2+(n2+n)2+(n+1)2
=(n2+n)2+n2+n2+2n+1,
=(n2+n)2+2(n2+n)+1,
=( n2+n+1)2
而右边=(n2+n+1)2
所以,左边=右边,等式成立.
点评:本题考查了完全平方公式,关键是凑成(n2+n)2+2(n2+n)+1的形式,考查了学生对完全平方公式的变形应用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

37、观察下面各式规律:
12+(1×2)2+22=(1×2+1)2
22+(2×3)2+32=(2×3+1)2
32+(3×4)2+42=(3×4+1)2

(1)请写出第2004行式子.
20042+(2004×2005)2+20042=(2004×2005+1)2

(2)请写出第n行式子.
n2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

观察下面各式规律:12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2…写出第n行的式子,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

观察下面各式规律:
12+(1×2)2+22=(1×2+1)2
22+(2×3)2+32=(2×3+1)2
32+(3×4)2+42=(3×4+1)2

(1)请写出第2004行式子.______
(2)请写出第n行式子.______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

观察下面各式规律:
12+(1×2)2+22=(1×2+1)2
22+(2×3)2+32=(2×3+1)2
32+(3×4)2+42=(3×4+1)2

(1)请写出第2004行式子.______
(2)请写出第n行式子.______.

查看答案和解析>>

同步练习册答案