精英家教网 > 初中数学 > 题目详情

【题目】(10分)如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.

求证:(1)△ABF≌△DCE;

(2)△AOD是等腰三角形.

【答案】(1)见解析;(2)见解析

【解析】试题分析:(1)根据矩形的性质可得∠B=∠C=90°AB=DC,然后求出BF=CE,再利用边角边证明△ABF△DCE全等即可;

2)根据全等三角形对应角相等可得∠BAF=∠EDC,然后求出∠DAF=∠EDA,然后根据等腰三角形的定义证明即可.

试题解析:(1)在矩形ABCD中,∠B=∠C=90°AB=DC

∵BE=CFBF=BC-FCCE=BC-BE

∴BF=CE

△ABF△DCE中,

∴△ABF≌△DCESAS);

2∵△ABF≌△DCE

∴∠BAF=∠EDC

∵∠DAF=90°-∠BAF∠EDA=90°-∠EDC

∴∠DAF=∠EDA

∴△AOD是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B,DDEa于点E,BFa于点F,若DE=4,BF=3,则EF的长为(  )

A. 1 B. 5 C. 7 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个反比例函数在第一象限内的图象如图所示,点P1,P2,P3,…,P2018在反比例函数图象上,它们的横坐标分别是,…,,纵坐标分别是1,3,5,…,共2018个连续奇数,过点P1,P2,P3,…,P2018分别作轴的平行线,与的图象交点依次是Q1),Q2),Q3),…,Q2018),则=_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a+b>2c

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:

与标准质量的差值
(单位:g

5

2

0

1

3

6

袋 数

1

4

3

4

5

3

1)这批样品的平均质量比标准质量多还是少?多或少几克?

2)若每袋标准质量为450克,则抽样检测的总质量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D(﹣7,3),点B、C在第二象限内.

(1)求点B的坐标。

(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;

(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2 , 再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为( )
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顺次连接对角线相等的四边形的四边中点,所得的四边形一定是____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD
(1)求证:BD平分∠ABC;
(2)当∠ODB=30°时,求证:BC=OD.

查看答案和解析>>

同步练习册答案