精英家教网 > 初中数学 > 题目详情
如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.
精英家教网
(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,△BME与△CNE相似?
(3)探究:AD为何值时,四边形MEND与△BDE的面积相等?
分析:(1)由相似三角形的判定得出△DEB∽△ACB,从而得出角的关系,再由AD=CD,得出BD与AB的关系,即可求的结论.
(2)此题分两种情况求解,△BME∽△CNE或△BME∽△ENC,根据相似三角形的性质即可求得;
(3)根据四边形的面积求解方法,利用分割法求不规则四边形的面积,作辅助线EN⊥BD即可求得.
解答:(1)证明:∵AD=CD
∴∠DAC=∠DCA
∴∠BDC=2∠DAC
∵DE是∠BDC的平分线
∴∠BDC=2∠BDE
∴∠DAC=∠BDE
∴DE∥AC;
(2)解:(I)当△BME∽△CNE时,得∠MBE=∠NCE
∴BD=DC
∵DE平分∠BDC
∴DE⊥BC,BE=EC
又∠ACB=90°
∴DE∥AC
BE
BC
=
BD
AB
即BD=
1
2
AB=
1
2
AC2+BC2
=5
∴AD=5
(II)当△BME∽△ENC时,得∠EBM=∠CEN
∴EN∥BD
∵EN⊥CD
∴BD⊥CD即CD是△ABC斜边上的高
由三角形面积公式得AB•CD=AC•BC
∴CD=
24
5

∴AD=
AC2-CD2
=
18
5

综上,当AD=5或
18
5
时,△BME与△CNE相似;
(3)解:由角平分线性质易得S△MDE=S△DEN=
1
2
DM•ME
∵S四边形MEND=S△BDE
1
2
BD•EM=DM•EM即DM=
1
2
BD
∴EM是BD的垂直平分线
∴BE=DE,DM=BM,
∴BD=2BM,
∴∠EDB=∠DBE
∵∠EDB=∠CDE
∴∠DBE=∠CDE
∵∠DCE=∠BCD
∴△CDE∽△CBD
CD
BC
=
CE
CD
①,
CD
BC
=
BE
BD
=
BE
2BM

∵BC=8,
即CD=
4BE
BM

∴cosB=
BM
BE
=
4
5

∴CD=4×
5
4
=5
由①式得CE=
CD2
BC
=
25
8

∴BE=
39
8

∴BM=BE•cosB=
4
5
×
39
8
=
39
10

∴AD=AB-2BM=10-2×
39
10
=
11
5
精英家教网
点评:此题考查了平行线的判定,还考查了相似三角形的判定与性质,解题时要注意数形结合思想的应用,要注意不规则图形的面积的求解方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.
精英家教网
(1)求等腰梯形DEFG的面积;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).
探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;
探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,抛物线y=
1
4
x2-6
与直线y=
1
2
x
相交于A,B两点.
(1)求线段AB的长;
(2)若一个扇形的周长等于(1)中线段AB的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少;
(3)如图2,线段AB的垂直平分线分别交x轴、y轴于C,D两点,垂足为点M,分别求出OM,OC,OD的长,并验证等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如图3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,设BC=a,AC=b,AB=c.CD=b,试说明:
1
a2
+
1
b2
=
1
h2

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠ACB=90°,分别以AB、AC为底边向△ABC的外侧作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.试探究线段FD、FE的数量关系,并加以证明.
说明:如果你经历反复探索,没有找到解决问题的方法,可以从图2、3中选取一个,并分别补充条件∠CAB=45°、∠CAB=30°后,再完成你的证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,AB=AC=3,BD为AC边的中线,AB1⊥BD交BC于B1,B1A1⊥AC于A1精英家教网
(1)求AA1的长;
(2)如图2,在Rt△A1B1C中按上述操作,则AA2的长为
 

(3)在Rt△A2B2C中按上述操作,则AA3的长为
 

(4)一直按上述操作得到Rt△An-1Bn-1C,则AAn的长为
 

查看答案和解析>>

同步练习册答案