【题目】如图,在平面直角坐标系中,四边形ABCD为正方形,点A的坐标为(0,3),点B的坐标为(0,﹣4),反比例﹣函数y=(k≠0)的图象经过点C.
(1)求反比例函数的解析式;
(2)点P是反比例函数在第二象限的图象上的一点,若△PBC的面积等于正方形ABCD的面积,求点P的坐标.
【答案】(1)y=﹣;(2)(﹣,10).
【解析】
(1)先由点A的坐标为(0,3),点B的坐标为(0,﹣4)得到AB=7,则点C的坐标为(7,﹣4),根据反比例函数图象上点的坐标特征得k=﹣28,则反比例函数的解析式为y=﹣;
(2)设点P到AD的距离为h,利用△PAD的面积恰好等于正方形ABCD的面积即可求得.
解:(1)∵点A的坐标为(0,3),点B的坐标为(0,﹣4),
∴AB=7,
∵四边形ABCD为正方形,
∴点C的坐标为(7,﹣4),
代入y=,得k=﹣28,)
∴反比例函数的解析式为y=﹣;
(2)设点P到BC的距离为h.
∵△PBC的面积等于正方形ABCD的面积,
∴×7×h=72,解得h=14,
∵点P在第二象限,yP=h﹣4=10,
此时,xP=﹣=﹣
∴点P的坐标为(﹣,10).
科目:初中数学 来源: 题型:
【题目】如图,在Rt△OAB中,∠OAB=90°,OA=AB,将△OAB物点O逆时针方向旋转90°得到△OA1B1.
(1)求∠AOB1的度数;
(2)连结AA1,求证:四边形OAA1B1是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2,现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束,在整个运动过程中,点C运动的路径长是( )
A.πB.2πC.4-2D.10-4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线与双曲线交于,两点,过作轴于点,过作轴于点,连接.
(Ⅰ)求,两点的坐标;
(Ⅱ)试探究直线与的位置关系并说明理由.
(Ⅲ)已知点,且,在抛物线上,若当(其中)时,函数的最小值为,最大值为,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B﹣A﹣D﹣C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于( )
A. 5B. C. 8D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平行四边形AOBC的顶点O(0,0),A(-3,4),点B在x轴正半轴上,按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G.则点G的坐标为( )
A.(2,4)B.(5,4)C.(-2,4)D.(3,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班“数学兴趣小组”对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | ﹣2 | ﹣ | m | 2 | 1 | 2 | 1 | ﹣ | ﹣2 | … |
其中,m= .
(2)根据上表数据,在如图所示的平面直角坐标系中描点,画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①方程﹣x2+2|x|+1=0有 个实数根;
②关于x的方程﹣x2+2|x|+1=a有4个实数根时,a的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 两支探险队进行探险活动,如图,甲队沿与公路MN夹角为25°方向前进,乙队沿与公路MN夹角为60°方向前进,分别经过公路MN于A、B两点,且AB距离为10km,两支探险队相遇于点C,则点C距公路MN的距离是多少?(结果精确到1km.参考数据sin25°≈0.40,cos25°≈0.90,tan25°≈0.50,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com