精英家教网 > 初中数学 > 题目详情

【题目】九年级某班同学在毕业晚会中进行抽奖活动,在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.
(1)请用列表或画树形图的方法(只选其中一样),表示两次摸出小球上的标号的所有结果;
(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.

【答案】
(1)解:列表得:

1

2

3

1

(1,1)

(2,1)

(3,1)

2

(1,2)

(2,2)

(3,2)

3

(1,3)

(2,3)

(3,3)

所有等可能的情况数有9种


(2)解:可能出现的结果共9种,它们出现的可能性相同,

两次摸出小球标号相同的情况共3种,分别为(1,1);(2,2);(3,3),

则P= =


【解析】(1)列表得出所有等可能的情况数即可;(2)找出两次摸出小球标号相同的情况数,即可求出中奖的概率.
【考点精析】通过灵活运用列表法与树状图法,掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,现将一直角三角形PMN放入图中,其中∠P=90°,PMAB于点EPNCD于点F.

(1)当△PMN所放位置如图①所示时,求出∠PFD与∠AEM的数量关系;

(2)当△PMN所放位置如图②所示时,求证:∠PFD-∠AEM=90°;

(3)(2)的条件下,若MNCD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)阅读以下内容:

已知实数x,y满足x+y=2,且求k的值.

三位同学分别提出了以下三种不同的解题思路:

甲同学:先解关于x,y的方程组,再求k的值.

乙同学:先将方程组中的两个方程相加,再求k的值.

丙同学:先解方程组,再求k的值.

(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.

(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)

请先在以下相应方框内打勾,再解答相应题目.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线 与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,有一宽度为1的刻度尺沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.

(1)求点A、B、C的坐标;
(2)当点M和点N都在线段AC上时,连接EN,如果点E的坐标为(4,0),求sin∠ANE的值;
(3)在刻度尺平移过程中,当以点P、Q、N、M为顶点的四边形是平行四边形时,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:阅读下列材料:已知二次三项式2x2+x+a有一个因式是(x+2),求另一个因式以及a 的值

解:设另一个因式是(2x+b),

根据题意,得2x2+x+a=(x+2)(2x+b),

展开,得2x2+x+a =2x2+(b+4)x+2b

所以,解得

所以,另一个因式是(2x3),a 的值是6.

请你仿照以上做法解答下题:已知二次三项式3x2 10x m 有一个因式是(x+4),求另一个因式以及m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A按顺时针方向旋转得到△ABC′,如图②所示.设∠CAC′=α(0°<α≤45°).

(1)当α=15°时,求证:AB∥CD;

(2)连接BD,当0°<α≤45°时,∠DBC′+∠CAC′+∠BDC的度数是否变化,若变化 ,求出变化范围;若不变,求出其度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,分别在轴,轴上,轴,轴.点从点出发,以1个单位长度/秒的速度,沿五边形的边顺时针匀速运动一周,若顺次连接三点所围成的三角形的面积为,点运动的时间为秒,已知之间的函数关系如图②中折线所示.

(1)图①中点的坐标为   ;点的坐标为   

(2)求图②中所在直线的解析式;

(3)是否存在点,使的面积为五边形的面积的?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1:y1=2x+3与直线l2:y2=kx-1交于点A,点A的横坐标为-1,且直线l1x轴交于点B,与y轴交于点D,直线l2y轴交于点C.

(1)直线l2对应的函数表达式;

(2)连接BC,求SABC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知点A、B是反比例函数y=﹣ 上在第二象限内的分支上的两个点,点C(0,3),且△ABC满足AC=BC,∠ACB=90°,则线段AB的长为

查看答案和解析>>

同步练习册答案