【题目】请阅读下列材料:
问题:如图,在正方形和平行四边形中,点,,在同一条直线上,是线段的中点,连接,.
探究:当与的夹角为多少度时,平行四边形是正方形?
小聪同学的思路是:首先可以说明四边形是矩形;然后延长交于点,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.
(1)求证:四边形是矩形;
(2)与的夹角为________度时,四边形是正方形.
理由:
【答案】(1)详见解析;(2)90.
【解析】
(1)由正方形ABCD,易得∠EBG=90°,根据有一个角是直角的平行四边形是矩形,即可证得四边形BEFG是矩形;
(2)首先作辅助线:延长GP交DC于点H,根据正方形与平行四边形的性质,利用AAS易得△DHP≌△FGP,则有HP=GP,当∠CPG=90°时,利用SAS易证△CPH≌△CPG,根据全等三角形与正方形的性质,即可得BG=GF,根据有一组邻边相等的平行四边形是菱形,可得BEFG是菱形,而∠EBG=90°,即得四边形BEFG是正方形.
(1)∵正方形ABCD中,∠ABC=90°,
∴∠EBG=90°,
∴BEFG是矩形;
(2)90°;
理由:延长GP交DC于点H,
∵正方形ABCD和平行四边形BEFG中,AB∥DC,BE∥GF,
∴DC∥GF,
∴∠HDP=∠GFP,∠DHP=∠FGP,
∵P是线段DF的中点,
∴DP=FP,
∴△DHP≌△FGP,
∴HP=GP,
当∠CPG=90°时,∠CPH=∠CPG,
∵CP=CP,
∴△CPH≌△CPG,
∴CH=CG,
∵正方形ABCD中,DC=BC,
∴DH=BG,
∵△DHP≌△FGP,
∴DH=GF,
∴BG=GF,
∴BEFG是菱形,
由(1)知四边形BEFG是矩形,
∴四边形BEFG是正方形.
科目:初中数学 来源: 题型:
【题目】函数是关于的二次函数,求:
满足条件的值;
为何值时,抛物线有最低点?求出这个最低点.这时,当为何值时,随的增大而增大?
为何值时,函数有最大值?最大值是多少?这时,当为何值时,随的增大而减小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应国家节能减排的号召,鼓励市民节约用电,我市从2016年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况见折线图,请根据图象回答下列问题:
(1)当用电量是180千瓦时时,电费是___元;
(2)“基本电价”是___元/千瓦时;
(3)小明家12月份的电费是328.5元,这个月他家用电多少千瓦时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,点是边上的点(与,两点不重合),过点作,,分别交,于,两点,下列说法正确的是( )
A. 若,则四边形是矩形
B. 若垂直平分,则四边形是矩形
C. 若,则四边形是菱形
D. 若平分,则四边形是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用若干个形状、大小完全相同的长方形纸片围正方形,如图①是用4个长方形纸片围成的正方形,其阴影部分的面积为16;如图②是用8个长方形纸片围成的正方形,其阴影部分的面积为8;如图③是用12个长方形纸片围成的正方形,求其阴影部分的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,.分别是线段,上的点,连接,使四边形为正方形,若点是上的动点,连接,将矩形沿折叠使得点落在正方形的对角线所在的直线上,对应点为,则线段的长为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com