精英家教网 > 初中数学 > 题目详情

如图所示,已知:Rt△ABC与Rt△DEF不相似,其中∠C,∠F为直角,能否分别将两个三角形分割成两个三角形,使△ABC所成的每个三角形与△DEF所成的每个三角形分别对应相似?能的话请设计出一种分割方案.

答案:
解析:

在△ABC中,作∠1=∠E,CG交AB于G,在△DEF中,作∠2=∠A,FH交DE于点H,则直线CG,FH就是所求的分割.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺规作图:作∠BAC的平分线AM交BC于点D(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.
①试判断四边形AEDF的形状,并证明;
②若AC=8,CD=4,求四边形AEDF的周长和BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺规作图:作∠BAC的平分线AM交BC于点D(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.
①试说明四边形AEDF为平行四边形;
②若AB=10,BC=8,在折痕EF上有一动点P,求PC+PD的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺规作图:作∠BAC的平分线AM交BC于点D(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.①试判断四边形AEDF的形状,并证明;②若AC=8,CD=4,求四边形AEDF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知:Rt△ABC中,∠C=90°,AC=BC,AD是∠A的平分线.
求证:AC+CD=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知在Rt△ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿射线CB方向平移到△A′B′C′的位置.若平移距离为3,求△ABC与△A′B′C′的重叠部分的面积.

查看答案和解析>>

同步练习册答案