精英家教网 > 初中数学 > 题目详情
(2002•烟台)如图,某港口有一灯塔A,灯塔A的正东有B、C两灯塔,以BC为直径的半圆区域内有若干暗礁,BC=18海里,一船在M处测得灯塔A、C分别在船的南偏西60°和南偏西15°方向,船沿MA方向行驶6海里恰好处在灯塔C的正北方向N处.
(1)求CN的长(精确到0.1海里);
(2)若船继续沿MA方向朝A行驶,是否有触礁的危险?
(参考数值:=1.414,=1.732,sin15°=0.2588,cos15°=0.9658,tan15°=0.2680,cot15°=3.732)

【答案】分析:(1)设BC的中点是O,作ND⊥CM,OE⊥AM.求CN的长,可以在直角△NCD中利用三角函数求解.
(2)判断是否有触礁危险可以计算出OE的长,然后比较与9海里的大小关系就可以.
解答:解:(1)设BC的中点为O,作ND⊥CM,OE⊥AM,垂足分别为D、E.
在直角△MND中,ND=MN•sin∠NMD=6•sin45°=3(海里),
在直角△NCD中,CN=≈16.4海里.

(2)在直角△ANC中,AC=CN•cotA=16.4•cot30°=16.4×≈28.4海里,
∴AO=AC-BC=28.4-×18≈19.4(海里),
∴OE=AO≈×19.4=9.7(海里),
∵9.7>9,
所以船继续沿MA方向朝A行驶,没有触礁的危险.
点评:解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2002•烟台)如图,过点C的直线l∥x轴,抛物线y=ax2+bx+c(a<0)过A(-1,0),C(0,1)两点,且截直线l所得线段CD=
(1)求该抛物线的解析式;
(2)若点M(m,t)(m<0,t>0)在抛物线上,MN∥x轴,且与该抛物线的另一交点为N,问:是否存在实数t,使得MN=2AO?如果存在,求出t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《反比例函数》(03)(解析版) 题型:解答题

(2002•烟台)如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2.
(1)求该反比例函数的解析式;
(2)若点(-a,y1),(-2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:2002年山东省烟台市中考数学试卷(解析版) 题型:解答题

(2002•烟台)如图,过点C的直线l∥x轴,抛物线y=ax2+bx+c(a<0)过A(-1,0),C(0,1)两点,且截直线l所得线段CD=
(1)求该抛物线的解析式;
(2)若点M(m,t)(m<0,t>0)在抛物线上,MN∥x轴,且与该抛物线的另一交点为N,问:是否存在实数t,使得MN=2AO?如果存在,求出t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年山东省烟台市中考数学试卷(解析版) 题型:解答题

(2002•烟台)如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2.
(1)求该反比例函数的解析式;
(2)若点(-a,y1),(-2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:2002年山东省烟台市中考数学试卷(解析版) 题型:选择题

(2002•烟台)如图所示,直线l的解析式是( )

A.y=x+2
B.y=-2x+2
C.y=x-2
D.y=-x-2

查看答案和解析>>

同步练习册答案