分析 (1)根据函数的解析式直接写出其顶点坐标和对称轴即可;
(2)根据等边三角形的性质求得PB=4,将PB=4代入函数的解析式后求得x的值即可作为P点的横坐标,代入解析式即可求得P点的纵坐标;
解答 解:(1)顶点坐标是(0,1),对称轴是y轴(或x=O).
故答案为:(0,1),y轴;
(2)∵△PAB是等边三角形,
∴∠ABO=90°-60°=30°.
∴AB=20A=4.
∴PB=4.
把y=4代入y=$\frac{1}{4}$x2+1,
得 x=±2$\sqrt{3}$.
∴P1(2$\sqrt{3}$,4),P2(-2$\sqrt{3}$,4).
点评 本题考查了二次函数的性质及等边三角形的性质,解题的关键是仔细读题,并能正确的将点的坐标转化为线段的长.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com