精英家教网 > 初中数学 > 题目详情
已知:如图,楼顶有一根天线,为了测量楼的高度,在地面上取成一条直线的三点E、D、C,在点C处测得天线顶端A的仰角为60°,从点C走到点D,CD=6米,从点D处测得天线下端B的仰角为45°.又知A、B、E在一条线上,AB=25米,求楼高BE.

【答案】分析:根据从点D处测得天线下端B的仰角为45°,得出DE=BE,再利用tanC=,得出BE的长即可.
解答:解:∵从点D处测得天线下端B的仰角为45°,
∴DE=BE. 
设BE=x米,则
∴AE=(x+25)米,CE=(x+6)米,
∵在点C处测得天线顶端A的仰角为60°,
∴tanC=
=
∴x=×(7+19),
即楼高BE=×(7+19)米.
点评:此题主要考查了仰角的定义及其解直角三角形的应用,解题时首先正确理解仰角的定义,然后利用三角函数和已知条件构造方程解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,一座商场大楼的顶部竖直立有一个矩形广告牌,小红同学在地面上选择了在一条直线上的三点A(A为楼底)、D、E,她在D处测得广告牌顶端C的仰角为60°,在E两处测得商场大楼楼顶B 的仰角为45°,DE=5米.已知,广告牌的高度BC=2.35米,求这座商场大楼的高度AB(
3
取1.73,
2
取1.41,小红的身高不计,结果保留整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2005•闸北区二模)已知:如图,楼顶有一根天线,为了测量楼的高度,在地面上取成一条直线的三点E、D、C,在点C处测得天线顶端A的仰角为60°,从点C走到点D,CD=6米,从点D处测得天线下端B的仰角为45°.又知A、B、E在一条线上,AB=25米,求楼高BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,楼顶有一根天线,为了测量楼的高度,在地面上取成一条直线的三点E、D、C,在点C处测得天线顶端A的仰角为60°,从点C走到点D,CD=6米,从点D处测得天线下端B的仰角为45°.又知A、B、E在一条线上,AB=25米,求楼高BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一座商场大楼的顶部竖直立有一个矩形广告牌,小红同学在地面上选择了在一条直线上的三点AA为楼底)、DE,她在D处测得广告牌顶端C的仰角为60°,在E两处测得商场大楼楼顶B 的仰角为45°,DE=5米.已知,广告牌的高度BC=2.35米,求这座商场大楼的高度AB取1.73,取1.41,小红的身高不计,结果保留整数).

查看答案和解析>>

同步练习册答案