精英家教网 > 初中数学 > 题目详情

作业宝如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,BE⊥AE,垂足为点E.
求证:BE2=DE•AE.

证明:∵AD是∠CAB的角平分线,
∴∠CAD=∠BAD,
∵∠C=90°,
∴∠CAD+∠ADC=90°,
∵BE⊥AE,
∴∠E=90°,
∴∠EBD+∠BDE=90°,
∵∠ADC=∠BDE,
∴∠BAD=∠DBE,
∴△BDE∽△ABE,
∴BE:AE=DE:BE,
∴BE2=DE•AE.
分析:若要证明BE2=DE•AE则问题可转化为证明比例线段所在的三角形相似即可,即△BDE∽△BAE.
点评:本题考查了比例式的证明,解题的一般思路是比例线段所在的三角形相似,同时也考查了对顶角相等这样性质,是一道不错的中考题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案