精英家教网 > 初中数学 > 题目详情
已知AB、AC与⊙O相切于B、C,∠A=50°,点P是⊙O上异于B、C的一动点,则∠BPC的度数是
A.65°
B.115°
C.65°或115°
D.130°或50°
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2008•宝山区二模)如图,已知AB、AC是⊙O的两条切线,切点分是点B、点C,∠BAC=60°,又⊙O的半径为2cm,则点A与点O的距离为
4
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•峨眉山市二模)选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分.
题甲:如图1,正比例函数y=-
1
2
x
的图象与反比例函数y=
k
x
(k≠0)
在第二象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数图象上的点,且B点的横坐标为-1,在x轴上一点P,使PA+PB最小,求P点的坐标.
题乙:如图2,已知AB、AC分别为⊙O的直径和弦,D为BC的中点,DE⊥AC于E,DE=6,AC=16.
(1)求证:DE与⊙O相切;
(2)求直径AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们都知道,在等腰三角形中.有等边对等角(或等角对等边),那么在不等腰三角形中边与角的大小关系又是怎样的呢?让我们来探究一下.
如图1,在△ABC中,已知AB>AC,猜想∠B与∠C的大小关系,并证明你的结论;
证明:猜想∠C>∠B,对于这个猜想我们可以这样来证明:
在AB上截取AD=AC,连接CD,
∵AB>AC,∴点D必在∠BCA的内部
∴∠BCA>∠ACD
∵AD=AC,∴∠ACD=∠ADC
又∵∠ADC是△BCD的一个外角,∴∠ADC>∠B
∴∠BCA>∠ACD>∠B 即∠C>∠B
上面的探究过程是研究图形中不等量关系证明的一种方法,将不等的线段转化为相等的线段,由此解决问题,体现了数学的转化的思想方法.请你仿照类比上述方法,解决下面问题:
(1)如图2,在△ABC中,已知AC>BC,猜想∠B与∠A的大小关系,并证明你的结论;
(2)如图3,△ABC中,已知∠C>∠B,猜想AB与AC大小关系,并证明你的结论;
(3)根据前面得到的结果,请你总结出三角形中边、角不等关系的一般性结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

辨析题:在△ABC中,已知AB>AC,求证:AB=AC.
证明:如图,作∠BAC的平分线与边BC的中垂线交于点O,
则OB=OC,再作OE垂直AB于E,OF垂直AC于F,则OE=OF,
∴Rt△BOE≌Rt△COF,
∴BE=CF,①
在Rt△AOE和Rt△AOF中,OE=OF,AO=AO,
∴Rt△AOE≌Rt△AOF
∴AE=AF,②
由①、②得,AB=AC.
上述画图与证明过程中,哪里出错了呢?
这说明我们今后在解题时又要注意什么呢?
在△ABC中,AB>AC,∠BAC的平分线与边BC的中垂线相交于点O,OE垂直AB于点E,那么三条线段AB、AC、BE有何等量关系?请你写出来并加以证明.

查看答案和解析>>

同步练习册答案