精英家教网 > 初中数学 > 题目详情
8.已知⊙O上两个定点A、B和两个动点C、D,AC与BD交于点E.
(1)如图,求证:EA•EC=EB•ED;
(2)知图,若$\widehat{AB}$=$\widehat{BC}$,AD是⊙O的直径,求证:AD•AC=2BD•BC.

分析 (1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;
(2)如图,连接CD,OB交AC于点F,由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=$\frac{1}{2}$AC.证得△CBF∽△ABD.即可得到结论.

解答 (1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,
∴△AED∽△BEC,
∴$\frac{AE}{BE}=\frac{DE}{CE}$,
∴EA•EC=EB•ED;

(2)证明:如图,连接CD,OB交AC于点F
∵B是弧AC的中点,
∴∠BAC=∠ADB=∠ACB,且AF=CF=$\frac{1}{2}$AC.
又∵AD为⊙O直径,
∴∠ABC=90°,又∠CFB=90°.
∴△CBF∽△ABD.
∴$\frac{CF}{BD}=\frac{BC}{AD}$,
故CF•AD=BD•BC.
∴AC•AD=2BD•BC.

点评 本题考查了圆周角定理,相似三角形的判定和性质,正确作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.画△ABC中BC边上的高,下面的画法中,正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC.若CD=3,BD=2$\sqrt{6}$,sin∠DBC=$\frac{\sqrt{3}}{3}$.
(1)求BC的长;
(2)求证:△BCD≌△BAD;
(3)求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°,得到线段CE,连接DE;
(1)①依据题意补全图形;②请判断∠ADC和∠CDE之间的数量关系为∠ADC+∠CDE=180°;
(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM、AE和BE之间的敦量关系,并说明理由;
(3)在(1)的条件下,若AD=1,CD=$\sqrt{2}$,BC边的中点为P,点G是线段DE上一个动点,当△CDE绕点C旋转的过程中,则PG的最小值为0;PG的最大值为$\sqrt{2}$+$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.平面直角坐标系xOy中,点A、B分别在函数y1=$\frac{3}{x}$(x>0)与y2=-$\frac{3}{x}$(x<0)的图象上,A、B的横坐标分别为a、b.
(1)若AB∥x轴,求△OAB的面积;
(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;
(3)作边长为2的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于3的任意实数a,CD边与函数y1=$\frac{3}{x}$(x>0)的图象都有交点,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若|a|=$\sqrt{3}$,则a=(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.±$\sqrt{3}$D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,在?ABCD中,AD=2AB,F是AD的中点,作CE⊥AB于E,在线段
AB上,连接EF、CF.则下列结论:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正确的是(  )
A.②④B.①②④C.①②③④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,在正方形ABCD中,O是对角线AC上一点,点E在BC的延长线上,且OE=OB.
(1)求证:△OBC≌△ODC.
(2)求证:∠DOE=∠ABC.
(3)把正方形ABCD改为菱形,其他条件不变(如图2),若∠ABC=52°,求∠DOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?
(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=35度.(直接写出结果)
(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?为什么?

查看答案和解析>>

同步练习册答案