已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,
(1)试求k,b的值及C点坐标;
(2)x取何值时y1,y2均随x的增大而增大;
(3)x取何值时y1>y2.
(1),,C(,);(2)x<1;(3)x<0或x>
解析试题分析:(1)把x=0代入抛物线的解析式即可得到B点坐标,再根据OA=2OB可得A点的坐标,再根据待定系数法即可求得一次函数解析式,再求得一次函数和抛物线的交点,即得C点的坐标;
(2)先把二次函数配方为顶点式,再结合二次函数的图象即可作出判断;
(3)根据两个图象的交点坐标再结合两个的图象的特征即可作出判断.
(1)令x=0,将其代入抛物线的解析式,得:y2=3,
故B点坐标为(0,3),
∵OA=2OB,
∴A点的坐标为(-6,0),
将A和B两点的坐标代入一次函数解析式得:,
解得:,
∴直线的函数解析式为:y1=x+3,
C点的坐标为一次函数和抛物线的交点,将两个解析式联立求得C点的坐标为(,);
(2)抛物线y2=-x2+2x+3=-(x-1)2+4,可知其对称轴为x=1,
若y1,y2均随x的增大而增大,则x<1;
(3)由题给图形可知,当y1>y2时,x<0或x>.
考点:二次函数的性质
点评:二次函数的性质是初中数学的重点,是中考中极为常见的知识点,非常基础,需熟练掌握.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com