精英家教网 > 初中数学 > 题目详情

已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,
(1)试求k,b的值及C点坐标;
(2)x取何值时y1,y2均随x的增大而增大;
(3)x取何值时y1>y2

(1),C();(2)x<1;(3)x<0或x>

解析试题分析:(1)把x=0代入抛物线的解析式即可得到B点坐标,再根据OA=2OB可得A点的坐标,再根据待定系数法即可求得一次函数解析式,再求得一次函数和抛物线的交点,即得C点的坐标;
(2)先把二次函数配方为顶点式,再结合二次函数的图象即可作出判断;
(3)根据两个图象的交点坐标再结合两个的图象的特征即可作出判断.
(1)令x=0,将其代入抛物线的解析式,得:y2=3,
故B点坐标为(0,3),
∵OA=2OB,
∴A点的坐标为(-6,0),
将A和B两点的坐标代入一次函数解析式得:
解得:
∴直线的函数解析式为:y1=x+3,
C点的坐标为一次函数和抛物线的交点,将两个解析式联立求得C点的坐标为();
(2)抛物线y2=-x2+2x+3=-(x-1)2+4,可知其对称轴为x=1,
若y1,y2均随x的增大而增大,则x<1;
(3)由题给图形可知,当y1>y2时,x<0或x>
考点:二次函数的性质
点评:二次函数的性质是初中数学的重点,是中考中极为常见的知识点,非常基础,需熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,CE、CF分别是△ABC的内外角平分线,过点A作CE、CF的垂线,垂足分别为E、F.
(1)求证:四边形AECF是矩形;
(2)当△ABC满足什么条件时,四边形AECF是正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知:如图,E,F分别是平行四边形ABCD的边AD,BC的中点.
求证:AF=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△BCE、△ACD分别是以BE、AD为斜边的直角三角形,且BE=AD,△CDE是等边三角形.求证:△ABC是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,E,F分别是?ABCD的边AD,BC的中点.求证:AF=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,BE、CF分别是△ABC的边AC、AB上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.请你判断线段AD与AG有什么关系?并证明.

查看答案和解析>>

同步练习册答案