精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BCx轴,点A在x轴的负半轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)求A点坐标并求抛物线的解析式;
(3)若点P在x轴下方且在抛物线对称轴上的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
(1)y=ax2-5ax+4,
对称轴:x=-
-5a
2a
=
5
2


(2)经过△ABC的三个顶点,已知BCx轴,点A在x轴上,点C在y上,且AC=BC,
令x=0,y=4,可知C点坐标(0,4),
BCx轴,所以B点纵坐标也为4,
又∵BC两点关于对称轴x=
5
2
对称,
即:
xB+0
2
=
5
2

xB=5,
∴B点坐标(5,4).
A点在x轴上,设A点坐标(m,0),
AC=BC,即AC2=BC2
AC2=42+m2
BC=5,
∴42+m2=52
∴m=±3,
∴A点坐标(-3,0),
将A点坐标之一(-3,0)代入y=ax2-5ax+4,
0=9a+15a+4,
a=-
1
6

y=-
1
6
x2+
5
6
x+4;
将A点坐标是(3,0),则与A在x轴的负半轴矛盾,故舍去.
故函数关系式为:y=-
1
6
x2+
5
6
x+4.

(3)存在符合条件的点P共有3个.以下分三类情形探索.
设抛物线对称轴与x轴交于N,与CB交于M.
过点B作BQ⊥x轴于Q,
易得BQ=4,AQ=8,AN=5.5,BM=
5
2

①以AB为腰且顶角为角A的△PAB有1个:△P1AB.
∴AB2=AQ2+BQ2=82+42=80(8分)
在Rt△ANP1中,P1N=
AP12-AN2
=
AB2-AN2
=
80-(5.5)2
=
199
2

∴P1
5
2
,-
199
2
).(9分)
②以AB为腰且顶角为角B的△PAB有1个:△P2AB.
在Rt△BMP2中MP2=
B
P22
-BM2
=
AB2-BM2

=
80-
25
4

=
295
2
,(10分)
∴P2=(
5
2
8-
295
2
).(11分)
③以AB为底,顶角为角P的△PAB有1个,即△P3AB.
画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C.
过点P3作P3K垂直y轴,垂足为K,显然Rt△P3CKRt△BAQ.
P3K
CK
=
BQ
AQ
=
1
2

∵P3K=2.5
∴CK=5于是OK=1,(13分)
∴P3(2.5,-1).
④以B为顶点时,交于x轴上方,求得P(
5
2
8+
295
2
)(舍去).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3)则此抛物线对此函数的表达式为(  )
A.y=x2+2x+3B.y=x2-2x-3C.y=x2-2x+3D.y=x2+2x-3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(1,
3
),△AOB的面积是
3

(1)求点B的坐标;
(2)求过点A、O、B的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C.
(1)求抛物线的顶点M的坐标;(用a的代数式表示)
(2)直线y=x+d经过C、M两点,并且与x轴交于点D.
①求抛物线的函数表达式;
②若四边形CDAN是平行四边形,且点N在抛物线上,则点N的坐标为(______,______);
③设点P是抛物线对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(6)一辆宽6m的货车要通过跨度为8m、拱高为4m的单行抛物线隧道(从正中通过),为了保证安全,车顶离隧道顶部至少要t.6m的距离,货车的限高为多少?
(6)若将(6)中的单行道改为双行道,即货车必须从隧道中线的右侧通过,货车的限高应是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=-x2+2bx-(2b-1)(b为常数)与x轴相交于A(x1,0),B(x2,0)(x2>x1>0)两点,设OA•OB=3(O为坐标系原点).
(1)求抛物线的解析式;
(2)设抛物线的顶点为C,抛物线的对称轴交x轴于点D,求证:点D是△ABC的外心;
(3)在抛物线上是否存在点P,使S△ABP=1?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是(  )
A.6B.2
6
C.2
5
D.2
2
+2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=-x2+4x-3与x轴相交于A、B两点(A点在B点的左侧),顶点为P.
(1)求A、B、P三点坐标;
(2)在下面的直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值y大于零;
(3)确定此抛物线与直线y=-2x+6公共点的个数,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小敏在某次投篮中,球的运动路线是抛物线y=-
1
5
x2+3.5
的一部分(如图),若命中篮圈中心,则他与篮底的距离l是______米.

查看答案和解析>>

同步练习册答案