精英家教网 > 初中数学 > 题目详情
6.直线y=2x+3向下平移4个单位可得直线y=2x-1.

分析 直接根据“上加下减”的平移规律求解即可.

解答 解:将直线y=2x+3向下平移4个单位,所得直线的解析式为y=2x+3-4,即y=2x-1.
故答案为2x-1.

点评 本题考查一次函数图象与几何变换,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.下列几何图形中,既是轴对称图形,又是中心对称图形的是(  )
A.等腰三角形B.正三角形C.平行四边形D.正方形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.
(1)求篮球和足球的单价;
(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的$\frac{2}{3}$,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?
(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图所示,△ABC中,AD⊥BC,AE平分∠BAC.
(1)若∠B=30°,∠C=70°,求∠DAE的度数;
(2)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.若k>0,点P(-k,k)在第(  )象限.
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.等腰三角形周长为10cm,底边BC长为ycm,腰AB长为xcm,
(1)写出y关于x的函数关系式;
(2)求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,AB=25,顶点C在y轴的负半轴上,tan∠ACO=$\frac{3}{4}$,点P在线段OC上,且PO、PC的长(PO<PC)是关于x的方程x2-12x+32=O的两根.
(1)求P点坐标求
(2)求AC、BC的长;
(3)在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在,请直接写出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如果-3x2a-1+6=0是关于x的一元一次方程,那么a=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点A的坐标为(0,2),点B在抛物线y=ax2+ax-2上.
(1)点B的坐标为(-3,1),抛物线的关系式为y=$\frac{1}{2}$x2+$\frac{1}{2}$x-2;
(2)若点D是(1)中所求抛物线在第三象限内的一个动点,连接BD、CD,当△BCD的面积最大时,求点D的坐标;
(3)若将三角板ABC沿射线BC平移得到△A′B′C′,当C′在抛物线上时,问此时四边形ACC′A′是什么特殊四边形?请证明之,并判断点A′是否在抛物线上,请说明理由.

查看答案和解析>>

同步练习册答案