精英家教网 > 初中数学 > 题目详情
(2013•陕西)一天晚上,黎明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).
分析:根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.
解答:解:设CD长为x米,
∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA
∴MA∥CD∥BN
∴EC=CD=x
∴△ABN∽△ACD,
BN
CD
=
AB
AC

1.75
x
=
1.25
x-1.75

解得:x=6.125≈6.1.
∴路灯高CD约为6.1米.
点评:本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为
10.5
10.5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•陕西)我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分为:“A--了解很多”、“B--了解较多”,“C--了解较少”,“D--不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.

根据以上信息,解答下列问题:
(1)本次抽样调查了多少名学生?
(2)补全两幅统计图;
(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•陕西)甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,
(1)求甲伸出小拇指取胜的概率;
(2)求乙取胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•陕西)问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案