精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为半圆的直径,点C是弧AD的中点,过点C作BD延长线的垂线交于点E.
(1)求证:CE是半圆的切线;
(2)若OB=5,BC=8,求CE的长.

【答案】
(1)证明:如图,连接AD、OC,OC交AD于F.

=

∴OC⊥AD,

∴AF=FD,∵OA=OB,

∴OF∥BD,即OC∥BE,

∵EC⊥EB,

∴EC⊥OC,

∴EC是⊙O的切线.


(2)解:连接AC,作OH⊥AC于H.

∵AB是直径,

∴∠ACB=90°,

∴AC= = =6,

∵OH⊥AC,

∴AH=CH=3,OH= =4,

∵SAOC= ACOH= COAF,

∴AF= =

∴DF=AF=

∵∠E=∠ECF=∠CFD=90°,

∴四边形ECFD是矩形,

∴EC=DF=


【解析】(1)欲证明EC是⊙O的切线,只要证明EC⊥OC,只要证明OC∥EB即可.(2)连接AC,作OH⊥AC于H,在Rt△ABC中,利用勾股定理求出AC,再求出OH,利用SAOC= ACOH= COAF求出AF,再证明CE=DF=AF即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料并解答下列问题.

你知道吗?一些代数恒等式可以用平面图形的面积来表示,例如(2ab)(ab)2a23abb2就可以用图甲中的①或②的面积表示.

(1)请写出图乙所表示的代数恒等式;

(2)画出一个几何图形,使它的面积能表示(ab)(a3b)a24ab3b2

(3)请仿照上述式子另写一个含有ab的代数恒等式,并画出与之对应的几何图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利情况如表所示:

销售方式

粗加工后销售

精加工后销售

每吨获利(元)

1000

2000

已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工. ①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,AB=AC,BD,CE是角平分线,图中的等腰三角形共有( )

A. 6个 B. 5个 C. 4个 D. 3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线相交于点E,DC=DE.
(1)求证:∠A=∠AEB;
(2)如果DC⊥OE,求证:△ABE是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则 的值是(
A.
B.
C. +1
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.

(1)求证:△ABE≌△CAF

(2)如图①过A的直线与斜边BC不相交时,试探索EF、 BE、CF三条线段的关系;

(3)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求FE长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米。(1)这个梯子底端离墙多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?如果不是,那滑动了几米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知:点A(0,0),B( ,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1 , 第2个△B1A2B2 , 第3个△B2A3B3 , …,则第n个等边三角形的边长等于

查看答案和解析>>

同步练习册答案