精英家教网 > 初中数学 > 题目详情

如图(1)至图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,点B、C、E在同一条直线上.

(1)已知:如图(1),AC=AB,AD=AE.求证:①CD=BE;②CD⊥BE.

(2)如图(2),当AB=kAC,AE=kAD(k≠1)时,分别说出(1)中的两个结论是否成立,若成立,请给予证明;若不成立,请说明理由.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和成本进行了调研,结果如下:每件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1),每件商品的成本Q(元)与时间t(月)的关系可用一条抛物线的一部分上的点来表示(如图2).
(说明:图1,图2中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本.)
请你根据图象提供的信息回答:
(1)每件商品在3月份出售时的利润(利润=售价-成本)是多少元?
(2)求图2中表示的每件商品的成本Q(元)与时间t(月)之间的函数关系式(不要求写自变量的取值范围);
(3)你能求出三月份至七月份每件商品的利润W(元)与时间t(月)之间的函数关系式吗(请写出计算过程,不要求写自变量的取值范围)?若该公司共有此种商品30000件,准备在一个月内全部售完,请你计算一下至少可获利多少元?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,边长为1.△BCD是顶角为∠BDC且∠BDC=120°的等腰三角形.以D为顶点作一个60°的角,角的两边分别交AB,AC于M,N,延长AC至E点,使CE=BM,连接DE.
(1)图中有两个三角形是互相旋转而得到的吗?若有,指出这两个三角形.并指出旋转中心及旋转角的度数;
(2)图中有成轴对称图形的两个三角形吗?若有,请指出,并指明对称轴;
(3)△AMN的周长是
2
2

查看答案和解析>>

科目:初中数学 来源:海南省期末题 题型:解答题

如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 _________ (直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.

查看答案和解析>>

科目:初中数学 来源:江苏省期末题 题型:解答题

如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 _________ (直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.

查看答案和解析>>

科目:初中数学 来源:江苏省期末题 题型:解答题

如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°。将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;
(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?(直接写出结果)
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由。

查看答案和解析>>

同步练习册答案