(本题9分)如图,已知抛物线y=ax2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点.
1.(1)求抛物线的解析式;
2.(2)求点D的坐标,并在图中画出直线BD;
3.(3)求出直线BD的一次函数解析式,并根据图象回答:当x满足什么条件时,上述二次函数的值大于该一次函数的值.
科目:初中数学 来源: 题型:
(本题8分)
如图,已知抛物线与直线y=x交于A、B两点,与y轴交于点C,OA=OB,BC∥x轴
(1)求抛物线的解析式.
(2)设D、E是线段AB上异于A、B的两个动点(点E在点D的上方),DE=,过D、E两点分别作y轴的平行线,交抛物线于F、G,若设D点的横坐标为x,四边形DEGF的面积为y,求x与y之间的关系式,写出自变量x的取值范围,并回答x为何值时,y有最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012届湖北省黄石四中七年级下学期期中考试数学卷 题型:解答题
(本题6分)如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD。
理由如下:
∵∠1 =∠2(已 知),
且∠1 =∠CGD(__________________________)
∴∠2 =∠CGD(等量代换)
∴CE∥BF(_______________________________)
∴∠ =∠BFD(__________________________)
又∵∠B =∠C(已 知)
∴∠BFD =∠B( )
∴AB∥CD(________________________________)
查看答案和解析>>
科目:初中数学 来源:2012-2013学年浙江省杭州市九年级12月月考数学试卷(解析版) 题型:解答题
(本题8分)如图,已知点P是反比例函数图像上一点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数图像于E、F两点.
(1) 用含k1、k2的式子表示以下图形面积:
① 四边形PAOB;② 三角形OFB;③ 四边形PEOF;
(2) 若P点坐标为(-4,3),且PB︰BF=2︰1,分别求出、的值.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年浙江省九年级上学期期中阶段性测试数学卷 题型:解答题
(本题14分)如图,已知正比例函数和反比例函数的图象都经过点.
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使的面积与的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com