精英家教网 > 初中数学 > 题目详情
13、若对于任意n个连续正整数中,总存在一个数的数字之和是8的倍数.试确定n的最小值.并说明理由.
分析:首先证n≤14时,题设的性质不成立,由当N=14时,对于9999993,9999994,…,10000006这14个连续整数,任意一个数的数字之和均不能被8整除,即可得n≤14时,题设的性质不成立;然后证n=15时,题设的性质成立,由于设a1,a2,…,a15为任意的连续15个正整数,则这15个正整数中,个位数字为0的整数最多有两个,最少有一个,所以分别从当a1,a2,…,a15中个位数字为0的整数有两个时与当a1,a2,…,a15中个位数字为0的整数有一个时去分析即可求得答案.
解答:解:先证n≤14时,题设的性质不成立.
当N=14时,对于9999993,9999994,…,10000006这14个连续整数,任意一个数的数字之和均不能被8整除.
故n≤14时,题设的性质不成立.
因此,要使题设的性质成立,应有n≥15.
再证n=15时,题设的性质成立.
设a1,a2,…,a15为任意的连续15个正整数,则这15个正整数中,个位数字为0的整数最多有两个,最少有一个,可以分为:
(1)当a1,a2,…,a15中个位数字为0的整数有两个时,
设ai<aj,且ai、aj的个位数字为0,则满足ai,ai+1,…,ai+9,aj为连续的11个整数,其中ai,ai+1,…,ai+9,aj无进位.
设ni表示ai各位数字之和,则前10个数各位数字之和分别为ni,ni+1,…,ni+9.
故这连续的10个数中至少有一个被8整除.
(2)当a1,a2,…,a15中个位数字为0的整数有一个时(记为ai),
①若整数i满足1≤i≤8时,则在ai后面至少有7个连续整数,于是ai,ai+1,…,ai+7这8个连续整数的个位数字之和也为8个连续整数,所以,必有一个数能被8整除.
②若整数i满足9≤i≤15时,则在ai前面至少有8个连续整数,不妨设ai-8,ai-7,…,ai-1这8个连续整数的个位数字之和也为8个连续整数,所以,必有一个数能被8整除.
综上,对于任意15个连续整数中,必有一个数,其各位数字之和是8的倍数.
而小于15个的任意连续整数不成立此性质.
∴n的最小值是15.
点评:此题考查了整数问题的综合应用.此题难度较大,解题的关键是注意分类讨论你思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

仔细观察下列四个等式
1×2×3×4+1=25=52
2×3×4×5+1=121=112
3×4×5×6+1=361=192
4×5×6×7+1=841=292
(1)观察上述计算结果,找出它们的共同特征.
(2)以上特征,对于任意给出的四个连续正整数的积与1的和仍具备吗?若具备,试猜想,第n个等式应是什么?给出你的思考过程
(3)请你从第10个式子以后的式子中,再任意选一个式子通过计算来验证你猜想的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

仔细观察下列四个等式
1×2×3×4+1=25=52
2×3×4×5+1=121=112
3×4×5×6+1=361=192
4×5×6×7+1=841=292
(1)观察上述计算结果,找出它们的共同特征.
(2)以上特征,对于任意给出的四个连续正整数的积与1的和仍具备吗?若具备,试猜想,第n个等式应是什么?给出你的思考过程
(3)请你从第10个式子以后的式子中,再任意选一个式子通过计算来验证你猜想的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

仔细观察下列四个等式
1×2×3×4+1=25=52
2×3×4×5+1=121=112
3×4×5×6+1=361=192
4×5×6×7+1=841=292
(1)观察上述计算结果,找出它们的共同特征.
(2)以上特征,对于任意给出的四个连续正整数的积与1的和仍具备吗?若具备,试猜想,第n个等式应是什么?给出你的思考过程
(3)请你从第10个式子以后的式子中,再任意选一个式子通过计算来验证你猜想的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

若对于任意n个连续正整数中,总存在一个数的数字之和是8的倍数.试确定n的最小值.并说明理由.

查看答案和解析>>

同步练习册答案