精英家教网 > 初中数学 > 题目详情

【题目】如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的距离(即AB的长)

【答案】

【解析】试题分析:过点AADOBD.先解RtAOD,得出AD=OA=2km,再由△ABD是等腰直角三角形,得出BD=AD=2km,则AB=AD=km

解:如图,过点AADOBD.

RtAOD,

∵∠ADO=90°,∠AOD=30°OA=4km

AD=OA=2km.

RtABD,∵∠ADB=90°,∠B=∠CABAOB=75°30°=45°

BD=AD=2km

AB=AD=km.

即该船航行的距离(AB的长)kkm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线分别与x轴、y轴交于两点,与直线交于点C42).

1)点A坐标为( ),B为( );

2)在线段上有一点E,过点Ey轴的平行线交直线于点F,设点E的横坐标为m,当m为何值时,四边形是平行四边形;

3)若点Px轴上一点,则在平面直角坐标系中是否存在一点Q,使得四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB和△ACD是等边三角形,其中ABx轴于E点,点E坐标为(30),点C(50)

(1)如图①,求BD的长;

(2)如图②,设BDx轴于F点,求证:∠OFA=DFA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(/)与每天销售量y()之间满足如图所示的关系:

(1)求出yx之间的函数关系式;

(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)

(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=   °;

(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;

(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是(  )海里.

A.50B.25C.25D.25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面文字:

对于(﹣5)+(﹣9)+17 +(﹣3

可以如下计算:

原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]

=[(一5)+(﹣9)+17+(一3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1

=﹣1

上面这种方法叫拆项法,你看懂了吗?

仿照上面的方法,请你计算:(﹣1)+(﹣2000)+4000+(﹣1999

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形中,点E是边AB的中点,延长DECB的延长线于点F

1)求证:

2)若,连接EC,则的度数是__________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.

某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8

(1)请通过计算说明A站是哪一站?

(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?

查看答案和解析>>

同步练习册答案