精英家教网 > 初中数学 > 题目详情
x
3
-
y
2
=1
,可以得到用x表示y的式子是(  )
A、y=
2x-2
3
B、y=
2x
3
-
1
3
C、y=
2x
3
-2
D、y=2-
2x
3
分析:只需把含有y的项移到方程的左边,其它的项移到另一边,然后合并同类项、系数化为1就可用含x的式子表示y.
解答:解:移项,得
y
2
=
x
3
-1,
系数化为1,得y=
2x
3
-2.
故选C.
点评:本题考查的是方程的基本运算技能,移项、合并同类项、系数化为1等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

九年义务教育三年制初级中学教科书《代数》第三册第52页的例2是这样的:“解方程x4-6x2+5=0”.这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-6y+5=0…①,解这个方程得:y1=1,y2=5.当y=1时,x2=1,∴x=±1;当y=5时,x2=5,∴x=±
5
.所以原方程有四个根:x1=1,x2=-1,x3=
5
,x4=-
5

(1)在由原方程得到方程①的过程中,利用
法达到降次的目的,体现了转化的数学思想.
(2)解方程(x2-x)2-4(x2-x)-12=0时,若设y=x2-x,则原方程可化为

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,然后设x2-1=y…①,
那么原方程可化为y2-5y+4=0,
解得y1=1,y2=4.
当y=1时,x2-1=1,∴x2=2,∴x=±
2

当y=4时,x2-1=4,∴x2=5,∴x=±
5

故原方程的解为x1=
2
,x2=-
2
,x3=
5
,x4=-
5

解答问题:
(1)上述解题过程,在由原方程得到方程①的过程中,利用
 
法达到了解方程的目的,体现了转化的数学思想;
(2)请利用以上知识解方程x4-x2-6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、由m(a+b+c)=ma+mb+mc,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3 
即:(a+b)(a2-ab+b2)=a3+b3 ①
我们把等式①叫做多项式乘法的立方公式.
下列应用这个立方公式进行的变形不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,
设x2-1=y…①,
那么原方程可化为y2-5y+4=0,解得y1=1,y2=4,
当y=1时,x2-1=1,∴x2=2,∴x=±
2

当y=4时,x2-1=4,∴x2=5,∴x=±
5

故原方程的解为x1=
2
x2=-
2
x3=
5
x4=-
5

以上解题方法叫做换元法,在由原方程得到方程①的过程中,利用换元法达到了解方程的目的,体现了转化的数学思想;请利用以上知识解方程:
(1)x4-x2-6=0.                   (2)(x2+x)2+(x2+x)=6.

查看答案和解析>>

科目:初中数学 来源: 题型:

由m(a+b+c)=ma+mb+mc,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2)=a3+b3--①.我们把等式①叫做多项式乘法的立方公式.下列应用这个立方公式进行的变形正确的是(  )

查看答案和解析>>

同步练习册答案