【题目】某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.
请结合图中相关信息解答下列问题:
(1)扇形统计图中三等奖所在扇形的圆心角的度数是______度;
(2)请将条形统计图补全;
(3)获得一等奖的同学中有来自七年级,有来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学又有九年级同学的概率.
【答案】(1)108;(2)补图见解析;(3).
【解析】
(1)先根据参与奖的人数及其所占百分比求得总人数,再用乘以三等奖人数所占比例即可得答案;(2)根据总人数求出一等奖的人数,补全图形即可;(3)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算即可得答案.
(1)∵被调查的总人数为(人),
∴扇形统计图中三等奖所在扇形的圆心角的度数是,
故答案为:108;
(2)一等奖人数为(人),
补全图形如下:
(3)一等奖中,七年级人数为(人),九年级人数为(人),则八年级的有2人,
画树状图如下:
由树状图知,共有12种等可能结果,其中所选出的2人中既有八年级同学又有九年级同学的有4种结果,
所以所选出的2人中既有八年级同学又有九年级同学的概率为.
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,点分别是边的中点,连接.将绕点顺时针方向旋转,记旋转角为.
① ②
③ ④
(1)问题发现:当时, .
(2)拓展探究:试判断:当时,的大小有无变化?请仅就图②的情况给出证明.
(3)问题解决:当旋转至三点共线时,如图③,图④,直接写出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象经过点,直线与轴交于点为二次函数图象上任一点.
求这个二次函数的解析式;
若点是直线上方抛物线上一点,过分别作和轴的垂线,交直线于不同的两点在的左侧),求周长的最大值;
是否存在点,使得是以为直角边的直角三角形?如果存在,求点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+3经过点A (1,0)和点B (-3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.
(1)抛物线的解析式为__________,抛物线的项点坐标为__________;
(2)如图1,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)如图2,连接OP交BC于点D,当S△CPD∶S△BPD=1∶2时,请求出点D的坐标;
(4)如图3,点E的坐标为(0,-1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,,,点分别是的中点,连接.
(1)探索发现:
图1中,的值为_____________;的值为_________.
(2)拓展探究
若将绕点逆时针方向旋转一周,在旋转过程中的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
当旋转至三点在同一直线时,直接写出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+4与坐标轴交于A,B两点,OC⊥AB于点C,P是线段OC上的一个动点,连接AP,将线段AP绕点A逆时针旋转45°,得到线段AP',连接CP',则线段CP'的最小值为( )
A.B.1C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.
(1)求抛物线的表达式;
(2)在直线AC的上方的抛物线上,有一点P(不与点M重合),使△ACP的面积等于△ACM的面积,请求出点P的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知中,,,是边的中点,将绕点旋转得到,平分交于点,交于点,连接.下列结论:①;②;③;④.其中正确的结论有______(只填写序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的初中学生人数为 ,图1中m的值为 ;
(Ⅱ)求统计的这组每天在校体育活动时间数据的众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有1200名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com