精英家教网 > 初中数学 > 题目详情
7.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图),己知计划中的建筑材料可建围墙的总长为50m,设两饲养室合计长x(m),总占地面积为y(m2
(1)求y关于x的函数表达式和自变量的取值范围;
(2)若要使两间饲养室占地总面积达到200m2,则各道墙的长度为多少?占地总面积有可能达到210m2吗?

分析 (1)根据题意用含x的代数式表示出饲养室的宽,由矩形的面积=长×宽计算即可;
(2)由(1)可知y是x的二次函数,根据二次函数的性质分析即可.

解答 解:(1)∵围墙的总长为50米,2间饲养室合计长x米,
∴饲养室的宽=$\frac{50-x}{3}$米,
∴总占地面积为y=x•$\frac{50-x}{3}$=-$\frac{1}{3}$x2+$\frac{50}{3}$x,(0<x<50);

(2)当两间饲养室占地总面积达到200平方米时,则-$\frac{1}{3}$x2+$\frac{50}{3}$x=200,
解得:x=20或30;
答:各道墙长分别为20米、10米或30米、10米;
当占地面积达到210平方米时,则-$\frac{1}{3}$x2+$\frac{50}{3}$x=210,
方程的△<0,所以此方程无解,
所以占地面积不可能达到210平方米;

点评 此题主要考查了由实际问题列二次函数故选以及二次函数的最值问题和一元二次方程的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,若AB是CD的垂直平分线,E,F是AC,AD的中点,连结BE,BF.
(1)请写出图中任意两对相等线段:AC=AD,BC=BD;
(2)证明:BE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.有A,B,C三种款式的帽子,E,F二种款式的围巾,穿戴时小婷任意选一顶帽子和一条围巾.
(1)用合适的方法表示搭配的所有可能性结果.
(2)求小婷恰好选中她所喜欢的A款帽子和E款围巾的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某校足球队在一次训练中,一球员从高2.4米的球门正前方m米处将球射向球门,球射向球门的路线呈抛物线,当球飞行的水平距离为6米时,球达到最高点,此时球离地面3米,建立如图所示的平面直角坐标系
(1)求出抛物线的函数解析式
(2)当m=10时,试判断足球能否射入球门,并说明理由
(3)球员射门时,若满足t2>m>t1,球部越过球门,求t1的最小值及t2的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,正五边形ABCDE内接于⊙O,则∠ABD的度数为(  )
A.36°B.72°C.108°D.144°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.在 Rt△ABC中,AB=5,BC=3,则斜边中线长为2.5或$\frac{\sqrt{34}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,己知△ABC
(1)用直尺和圆规作出⊙O,使⊙O经过A,C两点,且圆心O在AB边上(不写作法,保留作图痕迹)
(2)在(1)中,若∠CAB=30°,∠B=60°且⊙O的半径为1,试求出AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在矩形ABCD中.AB=3厘米,BC=7厘米.动点E从点D出发向点A运动,速度为每秒1厘米,同时动点F从点B出发向点C运动,速度为每秒2厘米.当点F到达点C时,两点同时停止运动,设运动时间为t秒,连结EF,将矩形沿EF对折.
(1)当t=1时,求EF的长;
(2)当t为何值时,矩形ABCD左边无重叠部分(阴影部分)为矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.点C,D分别是△ABO的边AO,BO 延长线上的点,AB的延长线交DC于点E
(1)如图(1),若∠BOA=90°,BO=AO,AC=BD
①求证:CE=DE;
②若OC=2AO,直接写出sin∠AEO的值;
(2)如图(2),若BE=DE,$\frac{AO}{OC}$=$\frac{2}{3}$,AB=4,求DC的长.

查看答案和解析>>

同步练习册答案