在平面直角坐标系xOy中,已知二次函数的图像经过原点及点A(1,2),与x轴相交于另一点B.
(1)求:二次函数的解析式及B点坐标;
(2)若将抛物线以为对称轴向右翻折后,得到一个新的二次函数,已知二次函数与x轴交于两点,其中右边的交点为C点.点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D.点E、点F也随之运动);
①当点E在二次函数y1的图像上时,求OP的长.
②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,同时线段OC上另一个点Q从C点出发向O点做匀速运动,速度为每秒2个单位长度(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AC交于G点,以QG为边在QG的左侧作正方形QGMN(当Q点运动时,点G、点M、点N也随之运动),若P点运动t秒时,两个正方形分别有一条边恰好落在同一条直线上(正方形在x轴上的边除外),求此刻t的值.
(1),B(3,0);(2)①;②或或或2.
【解析】
试题分析:(1)利用二次函数的图象经过原点及点A(1,2),分别代入求出a,c的值即可;
(2)①过A点作AH⊥x轴于H点,根据DP∥AH,得出△OPD∽△OHA,进而求出OP的长;
②分别利用当点F、点N重合时,当点F、点Q重合时,当点P、点N重合时,当点P、点Q重合时,求出t的值即可.
试题解析:(1)∵二次函数的图象经过原点及点A(1,2),∴将(0,0),代入得出:c=0,将(1,2)代入得出:a+3=2,解得:,故二次函数解析式为:,∵图象与x轴相交于另一点B,∴,解得:x=0或3,则B(3,0);
(2)①由已知可得C(6,0),如图:过A点作AH⊥x轴于H点,∵DP∥AH,∴△OPD∽△OHA,∴,即,∴PD=2a,∵正方形PDEF,∴E(3a,2a),∵E(3a,2a)在二次函数y1=﹣x2+3x的图象上,∴a=;即OP=;
②如图1:
当点F、点N重合时,有OF+CN=6,∵直线AO过点(1,2),故直线解析式为:y=2x,当OP=t,则AP=2t,∵直线AC过点(1,2),(6,0),代入y=ax+b,,,解得:,故直线AC的解析式为:,∵当OP=t,QC=2t,∴QO=6﹣2t,∴GQ=,即NQ=,∴OP+PN+NQ+QC=6,则有,解得:;
如图2:
当点F、点Q重合时,有OF+CQ=6,则有,解得:;
如图3:
当点P、点N重合时,有OP+CN=6,则有,解得:;
如图4:
当点P、点Q重合时,有OP+CQ=6,则有,解得:.故此刻t的值为:,,,.
考点:二次函数综合题.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com