精英家教网 > 初中数学 > 题目详情

【题目】定义:对于已知的两个函数,任取自变量的一个值,当时,它们对应的函数值相等;当时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数,它的相关函数为.

1)已知点在一次函数的相关函数的图像上,求的值;

2)已知二次函数.

①当点在这个函数的相关函数的图像上时,求的值;

②当时,求函数的相关函数的最大值和最小值.

3)在平面直角坐标系中,点的坐标分别为,连结.直接写出线段与二次函数的相关函数的图像有两个公共点时的取值范围.

【答案】11;(2)① ;②;(3

【解析】

1)先求出的相关函数,然后代入求解,即可得到答案;

2)先求出二次函数的相关函数,①分为m0m0两种情况将点B的坐标代入对应的关系式求解即可;

②当-3≤x0时,y=x2-4x+,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x2+4x-,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值;

3)首先确定出二次函数y=-x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值,然后结合函数图象可确定出n的取值范围.

解:(1)根据题意,

一次函数的相关函数为

∴把点代入,则

2)根据题意,二次函数的相关函数为

①当m0时,将Bm)代入y=x2-4x+m2-4m+

解得:m=2+(舍去)或m=
m≥0时,将Bm)代入y=-x2+4x-得:-m2+4m-=

解得:m=2+m=2
综上所述:m=m=m=
②当-3≤x0时,y=x2-4x+,抛物线的对称轴为x=2,此时yx的增大而减小,

∴当时,有最大值,即

∴此时y的最大值为
0≤x≤3时,函数y=-x2+4x,抛物线的对称轴为x=2

x=0有最小值,最小值为

x=2时,有最大值,最大值y=
综上所述,当-3≤x≤3时,函数y=-x2+4x的相关函数的最大值为,最小值为

3)如图1所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有1个公共点.

∴当x=2时,y=1,即-4+8+n=1,解得n=-3
如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.

∵抛物线y=x2-4x-ny轴交点纵坐标为1
-n=1,解得:n=-1
∴当-3n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.
如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.

∵抛物线y=-x2+4x+n经过点(01),
n=1
如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.

∵抛物线y=x2-4x-n经过点M1),
+2-n=1,解得:n=
1n≤时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.
综上所述,n的取值范围是-3n≤-11n≤

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.

请根据图中信息完成下列各题.

(1)将频数分布直方图补充完整人数;

(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;

(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶处测得塔处的仰角为45°,塔底部处的俯角为22°.已知建筑物的高约为61米,请计算观景台的高的值.

(结果精确到1米;参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有四张正面标有数字,背面颜色一样的卡片,正面朝下放在桌面上,小红从中随机抽取一张卡片记下数字,再从余下的卡片中随机抽取一张卡片记下数字.

(1)第一次抽到数字2的卡片的概率是

(2)设第一次抽到的数字为,第二次抽到的数字为,点的坐标为,请用树状图或列表法求点在第三象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平而直角坐标系中,已知点,直线经过点.抛物线恰好经过三点中的两点.

判断点是否在直线上.并说明理由;

的值;

平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量.先测得居民楼ABCD之间的距离AC35m,后站在M点处测得居民楼CD的顶端D的仰角为45°.居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°0.82cos55°0.57tan55°1.43

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油所行使的路程作为样本,并绘制了以下不完整的频数分布直方图和扇形统计图.

根据题中已有信息,解答下列问题:

1)求n的值,并补全频数分布直方图;

2)若该汽车公司有600辆该型号汽车,试估计耗油所行使的路程低于的该型号汽车的辆数;

3)从被抽取的耗油所行使路程在这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,的顶点A在反比例函数的图像上,直线ABy轴于点C,且点C的纵坐标为5,过点AB分别作y轴的垂线AEBF,垂足分别为点EF,且


1)若点E为线段OC的中点,求k的值;

2)若为等腰直角三角形,,其面积小于3

①求证:

②把称为两点间的“ZJ距离”,记为,求的值.

查看答案和解析>>

同步练习册答案