精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD(四个角都是直角,四条边都相等)的边长为4,点E、F分别在边BC、CD上,且CF=1.
(1)若E为BC的中点,请你证明△AEF是直角三角形;
(2)若∠AFE=90°,求CE的值.
精英家教网
分析:(1)据条件画出图形,利用勾股定理及勾股定理的逆定理解答即可;
(2)利用相似三角形的判定与性质即可解决问题.
解答:解:(1)如图1,
∵四边形ABCD是正方形,
∴∠B=∠C=∠D=90°,
∵E为BC的中点,
∴BE=CE=2,
由勾股定理得,
AE2=AB2+BE2=42+22=20,
EF2=CE2+CF2=22+12=5,
AF2=AD2+DF2=42+32=25,
又∵AE2+EF2=AF2
∴△AEF是直角三角形;

(2)如图2,
由①知,AD=4,CF=1,DF=3,∠C=∠D=90°,
∵∠AFE=90°,
∴∠AFD+∠DAF=90°,∠AFD+∠EFC=90°,
∴∠DAF=∠EFC,
∴△ADF∽△FCE,
AD
CF
=
DF
CE

4
1
=
3
CE

解得CE=
3
4
点评:此题主要考查正方形的性质、勾股定理、勾股定理的逆定理以及相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案