精英家教网 > 初中数学 > 题目详情
如图所示,过点F(0,1)的直线y= kx+b与抛物线 y=交于M(xl, y1)和 N(x2,y2)两点(其中 xl<0,x2>0).     
(1)求b的值.    
(2)求x1. x2 的值.    
(3)分别过M、N作直线l:y= -1 的垂线,委足分别是M1、N1, 判断△M1FN1 的形状,并证明你的结论.    
(4)对于过点F1 的任意直线,是否存在一条定直线m,使m与以 MN为直径的圆相切.如果有,请写出这条直线 m的解析式;如果没有,请说明理由.
解:(1)b=1.  
(2 )
解方程组消元得依据 xl x2 =-4.
    
(3)△M1 FN1 是直角三角形理由如:    
由题知 M1 的横坐标为x1,N1的横坐标为x2
设M1N1 交y轴于F1,
则F1M1·F1N1 =-xl·x2= 4,而FF1 = 2,
所以 F1M1·FlNl=Fl F2
另有∠M1F1F = ∠FF1N1= 90°,
易证Rt△M1FF1∽Rt△FN1F1
得M1FF1= FN1F1
故∠M1FN1= ∠M1FF1+∠F1FN1=∠PN1F1 +∠F1FN1 =90°.
所以△M1FN1是直角三角形.   
 (4)存在,该直线为y= -1,理由如下:    
直线y= -1 即为直线MIN, ·    
如图,设N点横坐标为m·

得NN1=NF同理MM1 =MF.
那么MN= MM1+NN1,
作梯形MM1N1N 的中位线PQ
由中位线性质知.
即圆心到直线 y= -1 的距离等于圆的半径.
所以 y=-1总与该圆相切.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如图所示,过点P画直线a的平行线b的作法的依据是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,过点A(a,0)(a>0)且平行于y轴的直线分别与抛物线y=x2及y=
14
x2交于C、B精英家教网两点.
(1)求点C、B的坐标;
(2)求线段AB与BC的比;
(3)若正方形BCDE的一边DE与y轴重合,求此正方形BCDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,过点F(0,1)的直线y=kx+b与抛物线y=
14
x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2>0).
(1)求b的值.
(2)求x1•x2的值.
(3)分别过M,N作直线l:y=-1的垂线,垂足分别是 M1和N1.判断△M1FN1的形状,并证明你的结论.
(4)对于过点F的任意直线MN,是否存在一条定直线m(m是常数),使m与以MN为直径的圆相切?如果有,请求出这条直线m的解析式;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,过点D分别作DE∥BC,交AC于E,作DF∥AB,交BC于F,若AD:DC=1:2,则△ADE,△DCF,平行四边形DEBF的面积比是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,过点A(1,0)作垂直x轴的直线l,分别交函数y1=x(x≥0),y2=
4x
(x>0)图象于B、C两点,则BC=
3
3

查看答案和解析>>

同步练习册答案