精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,已知⊙OABC的外接圆,AB为⊙O的直径,AC=6cmBC=8cm.

(1)求⊙O的半径;

(2)请用尺规作图作出点P,使得点P优弧CAB上时,PBC的面积最大,请保留作图痕迹,并求出PBC面积的最大值.

【答案】(1)⊙O的半径为5cm;

(2)S△PBC=32.

【解析】(1)由直径所对的圆周角是直角可得出AB,然后求出AO,(2)由作图和题中已知条件计算即可.

(1)∵AB为⊙O的直径,AC=6cm,BC=8cm.

∴∠C为直角,AB=10cm

∴AO=5cm

(2)作图正确.

作BC的垂直平分线交优弧CAB于P,

S△PBC=32.

“点睛”本题考查了圆周角的定理推论:半圆(或直径)所对的圆周角是直角,考查了作线段的垂直平分线,解题关键是要熟练运用定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P( x, y1)与Q (x, y2)分别是两个函数图象C1C2上的任一点. 当a x b时,有-1 ≤ y1 - y2 ≤ 1成立,则称这两个函数在a x b上是“相邻函数”,否则称它们在a x b上是“非相邻函数”.

例如,点P(x, y1)与Q (x, y2)分别是两个函数y = 3x+1与y = 2x - 1图象上的任一点,当-3 ≤ x ≤ -1时,y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通过构造函数y = x + 2并研究该函数在-3 ≤ x ≤ -1上的性质,得到该函数值的范围是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此这两个函数在-3 ≤ x ≤ -1上是“相邻函数”.

(1)判断函数y = 3x + 2与y = 2x + 1在-2 ≤ x≤ 0上是否为“相邻函数”,说明理由;

(2)若函数y = x2 - xy = x - a在0 ≤ x ≤ 2上是“相邻函数”,求a的取值范围;

(3)若函数y =y =-2x + 4在1 ≤ x ≤ 2上是“相邻函数”,直接写出a的最大值与最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】江苏卫视《最强大脑》曾播出一期“辨脸识人”节目,参赛选手以家庭为单位,每组家庭由爸爸妈妈和宝宝3人组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝中选一个宝宝,然后分别在爸爸区域和妈妈区域中正确找出这个宝宝的父母,不考虑其他因素,仅从数学角度思考,已知在本期比赛中有A、B、C三组家庭进行比赛.

(1)若机器人智能小度选择A组家庭的宝宝,求小度在妈妈区域中正确找出其妈妈的概率;

(2)如果任选一个宝宝(假如选A组家庭),通过列表或树状图的方法,求机器人智能小度至少正确找对宝宝父母其中一人的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,一次函数y=-2x与二次函数y=ax2+2ax+c的图像交于A、B两点(点A在点B的右侧),与其对称轴交于点C.

(1)求点C的坐标;

(2)设二次函数图像的顶点为D,点C与点D关于 x轴对称,且△ACD的面积等于2.

① 求二次函数的解析式;

② 在该二次函数图像的对称轴上求一点P(写出其坐标),使△PBC与△ACD相似.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将平行四边形ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,求证:四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.

(1)说明:DC∥AB;
(2)求∠PFH的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列不等式变形中,错误的是(  )

A. ab,则a+cb+cB. a+cb+c,则ab

C. ab,则ac2bc2D. ac2bc2,则ab

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.

(1)探究筝形对角线之间的位置关系,并证明你的结论;
(2)在筝形ABCD中,已知AB=AD=10,BC=CD,BC>AB,BD、AC为对角线,BD=16.
①若∠ABC=90°,求AC的长;
②过点B作BF⊥CD于F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数yx2x2x2函数值y_____;已知函数y3x2x______函数值y12.

查看答案和解析>>

同步练习册答案