精英家教网 > 初中数学 > 题目详情
为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图),现测药物8分钟燃毕,此时空气中每立方米含药量为6毫克,请根据题中所提供的信息,回答下列问题

(1)药物燃烧时,y关于x的函数关系式为         ,自变量x的取值范围是      ;药物燃烧完后,y与x的函数关系式为         
(2)研究表明,当空气中的每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室.
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?
(1),0≤x≤8,;
(2)从消毒开始,至少需要经过30分钟后,学生才能回到教室;
(3)此次消毒是无效的,理由见解析.

试题分析:(1)由于在药物燃烧阶段,y与x成正比例,因此设函数解析式为(k1≠0),然后由(8,6)在函数图象上,利用待定系数法即可求得药物燃烧时y与x的函数解析式;由于在药物燃烧阶段后,y与x成反比例,因此设函数解析式为(k2≠0),然后由(8,6)在函数图象上,利用待定系数法即可求得药物燃烧阶段后y与x的函数解析式;
(2)当空气中的每立方米的含药量低于1.6毫克时学生方可进教室,把y=1.6代入,即可求得y的值,则可求得答案;
(3)把y=3代入中得x="4," 把y=3代入中得x=16,(8-4)+(16-8)=12>10得知此次消毒是无效的.
试题解析:(1)∵设正比例函数解析式为(k1≠0),函数的图象经过点P(8,6)
∴正比例函数的解析式为.自变量x的取值范围是0≤x≤8;
∵设反比例函数解析式为(k2≠0),函数的图象经过点P(8,6),
∴反比例函数的解析式为. 自变量x的取值范围是x≥4;
(2)把y=1.6代入中得x="30,"
∴从消毒开始,至少需要经过30分钟后,学生才能回到教室;
(3)把y=3代入中得x=4,
把y=3代入中得x=16,
(8-4)+(16-8)=12>10,
∴此次消毒是无效的.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为    W.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示是某一蓄水池的排水速度h)与排完水池中的水所用的时间t(h)之间的函数关系图象.

(1)请你根据图象提供的信息求出此蓄水池的蓄水量;
(2)写出此函数的解析式;
(3)若要6 h排完水池中的水,那么每小时的排水量应该是多少?
(4)如果每小时排水量是,那么水池中的水要用多少小时排完?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若点()在反比例函数的图象上,则k=          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分别交OA、AB于点C和点D,连结OD,若

(1)求反比例函数解析式;
(2)求C点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△OPQ是边长为2的等边三角形,若反比例函数的图象过点P,则此反比例函数的解析式是     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

反比例函数的图像在第二.四象限内,则m的取值范围(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是(  )
A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

反比例函数y=的图像如图所示,点M是该函数图像上一点,MN垂直于x轴,垂足是点N,如果S△MON=2,则k的值为(  ).
A.-2B.4C.D.

查看答案和解析>>

同步练习册答案