精英家教网 > 初中数学 > 题目详情
19.(1)如图(1),在△ABC中,∠C>∠B,AD⊥BC于点D,AE平分∠BAC,你能找出∠EAD与∠B、∠C之间的数量关系吗?并说明理由.
(2)如图(2),AE平分∠BAC,F为AE上一点,FM⊥BC于点M,这时∠EFM与∠B、∠C之间又有何数量关系?并说明理由.

分析 (1)根据三角形内角和定理以及角平分线的定义求出∠EAC,再根据直角三角形两锐角互余求出∠DAC,然后表示出∠EAD,整理即可得解;
(2)过点A作AD⊥BC于D,根据两直线平行,同位角相等可得∠EFM=∠EAD,再根据(1)的结论解答.

解答 解:(1)∵AE平分∠BAC,
∴∠EAC=$\frac{1}{2}$∠BAC=$\frac{1}{2}$(180°-∠B-∠C),
又∵AD⊥BC,
∴∠DAC=90°-∠C,
∴∠EAD=∠EAC-∠DAC=$\frac{1}{2}$(180°-∠B-∠C)-(90°-∠C)=$\frac{1}{2}$(∠C-∠B),
即∠EAD=$\frac{1}{2}$(∠C-∠B);
(2)如图,过点A作AD⊥BC于D,

∵FM⊥BC,
∴AD∥FM,
∴∠EFM=∠EAD=$\frac{1}{2}$(∠C-∠B).

点评 本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余的性质,整体思想的利用是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.在Rt△ABC中,∠ACB=90°,AB=4,AC=2,则cosB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=$\sqrt{2}$CB,过程如下:
过点C作CE⊥CB于点C,与MN交于点E,∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.      
又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,
∴△ECB为等腰直角三角形,∴BE=$\sqrt{2}$CB.
又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=$\sqrt{2}$CB.

(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.
(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=$\sqrt{2}$时,则CD=2,CB=$\sqrt{3}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在平面直角坐标系中,O是坐标原点,已知点P(3,3),点Q在坐标轴上,△POQ是等腰三角形,则满足条件的Q共有8个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、BC.已知AB=5,DE=1,BD=8,设CD=x.
(1)用含x的代数式表示AC+CE的长
(2)请问点C满足什么条件时,AC+CE的值最小?
(3)根据(2)中的规律和结论
请构图求出代数式$\sqrt{{x}^{2}+4}$$+\sqrt{(x-12)^{2}+9}$(0<x<12)的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.从等腰三角形的某一个顶点出发作一条直线,如果恰好能把这个三角形分成两个较小的等腰三角形,则原等腰三角形的顶角是36°,90°,108°,$\frac{180°}{7}$  度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知△ABC中,AB=AC,∠A=45°,AB为⊙O的直径,AC交⊙O于点E,连接BE
(1)求∠EBC的度数;
(2)求证:BD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,正方形ABCD的中心与原点O重合,点C的坐标为(-1,-1).
(1)将正方形绕原点O顺时针旋转45°,画出旋转得到的正方形A1B1C1D1
(2)分别求点A及其对应点A1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)已知:A=$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…$\frac{1}{\sqrt{99}+\sqrt{100}}$,B=$\frac{1}{\sqrt{2}+2\sqrt{1}}$+$\frac{1}{2\sqrt{3}+3\sqrt{2}}$+$\frac{1}{3\sqrt{4}+4\sqrt{3}}$+…$\frac{1}{99\sqrt{100}+100\sqrt{99}}$,求A-B的值?
(2)解方程组:$\left\{\begin{array}{l}{xy=2x+y-1}\\{yz=2z+3y-8}\\{zx=4z+3x-8}\end{array}\right.$.

查看答案和解析>>

同步练习册答案